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Abstract

Automating global and segmental (regional) assessmentardiac Left Ventricle (LV)
function in Magnetic Resonance Images (MRI) has recentlykeplain impressive research ef-
fort, which has resulted a number of techniques delivermognising performances. However,
despite such anfkort, the problem is still acknowledged to be challenginghvsubstantial
room for improvements in regard to accuracy. Furthermoustrof the existing techniques are
labour intensive, requiring delineations of the endo-/andpi-cardial boundaries in all frames
of a cardiac sequence.

On the one hand, global assessments of LV function focus timason of the Ejection
Fraction (EF), which quantifies how much blood the heart impimg within each beat. On the
other hand, regional assessments focus on comprehensilysiarof the wall motions within
each of the standardized segments of the myocardium, thelenwlich contracts and sends
the blood out of the LV.

In clinical practice, the EF is often estimated via manughsentation of several imagesin a
cardiac sequence which is prohibitively time consumingjaautomatic segmentation, which
is a challenging and computationally expensive task that msult in high estimation errors.
Additionally, the diagnosis of the segmental dysfunctisrbased on visual LV assessment,
which is subject to high inter-observer variability.

In this thesis, we propose accurate methods to estimategiatthl and regional LV func-
tion with minimal user inputs in real-time from statisticgtienated in MRI. From a simple user
input, we build image statistics for all the images in a sobgataset. We demonstrate that
these statistics are correlated with regional as well asaylbV function. Diferent machine
learning techniques have been employed to find these cooredaThe regional dysfunction is
investigated in terms of a bingngulti-classification problem.

A comprehensive evaluation over 20 subjects demonstrhtddtie estimated EFs corre-
lated very well with those obtained from independent marsggimentations. Furthermore,

comparisons with estimating EF based on recent segmem&lgorithms showed that the pro-



posed method yielded a very competitive performance. Fgpomnal binary classification, we
report a comprehensive experimental evaluation of theqe®g algorithm over 928 cardiac
segments obtained from 58 subjects. Compared against gtouthdevaluations by experi-
enced radiologists, the proposed algorithm performed editiyely, with an overall classifi-
cation accuracy of 86.09% and a kappa measure. #8.0We also report a comprehensive
experimental evaluation of the proposed multi-classificaflgorithm over the same dataset.
Compared against ground-truth labels assessed by expatlieadiologists, the proposed al-

gorithm yielded an overall 4-class accuracy of1Z®ao.



Keywords: left ventricle (LV), ejection fraction (EF), bhattachagygodficient, machine
learning, artificial neural network (ANN), magnetic resnoa images (MRI), principal com-
ponent analysis (PCA), kernel density estimation (KDE)jaegl wall motion abnormality
detection, image statistics, linear discriminant analysDA), linear support vector machine

(SVM), multi-class, cardiac dysfunction, normal, hypatsia, akinesia, dyskinesia.
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Chapter 1

Introduction

Cardiovascular disease in general is the leading cause tif weddwide [ 7], and Heart Fail-
ure (HF), in particular is a prevalent disease that can bsexhliy various heart condition§]]
Clinically, HF has a poor prognosis and its early stage diagnman play an essential role for
radiologists in planning the stages of the treatment. Ssiooee patients require specific treat-
ment, early and accurate diagnosis of HF is very importampraximately 25% of patients
with HF diagnosis are re-admitted to hospitals and 40% ahtbe within one year following
the first hospitalization. Furthermore, early and accudignosis can lead to mordfec-

tive treatment, reducing the re-hospitalization rate aotsequently, decrease the associated

financial burden on the public healthcare system.|

1.1 Heart Failure

The heart is considered as the engine of the body that cantsiy pumps oxygenated blood
to the cells (Fig. 1.1}. Body cells function properly when they receivefstient nutrient-rich
blood. When a patient fiiers from a serious HF condition, his heart may not be abledige
the required nutrition for the cells to function properly.

The heart consists of four chambers: the left and right v&a and the left and right atria.

Iplease refer to: httplsa.colorado.edessenctextgheart.html



HF occurs under one or a combination of the following cood

e The Left Ventricle (LV) muscle, the myocardium, is too weakgump an adequate

amount of blood (systolic heart failure) in each heart beat;
e The LV is not stficiently filled with blood (diastolic heart failure) in eaciiate;

e An insuficient amount of blood is supplied to the heart as a result ofrary artery

disease, particularly due to a narrowing of coronary aseand
¢ An infection weakens the heart muscle (cardiomayopathy).

There are also less common situations such as congenitalkdiszase, heart valve disease

and some types of abnormal heart rhythms (arrhythmia) tlagtlead to HF.

2Please refer to: httgwww.nim.nih.goymedlineplugencyarticle/000158.htm
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Figure 1.1: Blood Circulation. The figure is adopted from:
http://en.wikipedia.org/wiki/Circulatory_system

1.2 Blood Circulation

The heart is slightly larger than a fist, continuously purgpime blood through out the body.
The ventricles are the two main chambers of the heart thetveand send blood. The Right
Ventricle (RV) pumps the blood to the lungs and the left vieter(LV), pumps the blood to

the whole body in each heart beat. The ventricles have thigialls and generate higher blood
pressures comparing to the atria. Since the LV is requir@ditop the blood to the whole body,
its wall is thicker compared to the RV. Therefore, early aretse diagnosis of left ventricular

abnormalities plays an essential role in taking the treatrs&ps following prognosis.

When the heart contracts, it pushes the blood out into two magps: a systemic loop
happens when oxygenated blood is circulated into the bodyasted carbon dioxide is col-
lected from cells; pulmonary loop happens when the bloatliates to and from the lungs in
order to release the carbon dioxide and pick up new oxygeer.syktemic loop is controlled

by the left side of the heart where the pulmonary loop is asiel by the right side.


http://en.wikipedia.org/wiki/Circulatory_system 

The systemic loop begins when oxygenated blood from theslemgers the the upper left
chamber, called the Left Atrium (LA). When the LA is filled, tingitral valve is opened by
high blood pressure and blood flows down into the LV. When thecb¥tracts in each heart
beat, it pushes the blood into the aorta, the largest arfatyedbody (usually 2 to 3cm wide).
The oxygenated blood leaving the aorta brings oxygen to d¢idy lbells through a network of
arteries and capillaries. The de-oxygenated blood frony loedls returns to the heart via the
venous system. All de-oxygenated blood from the body rsttorihe heart by two large veins
called superior and inferior vena cavae. The superior vewa ceceives blood from upper
organs of the body, while the inferior vena cava receivesdlvom the lower ones. Both of
these veins fill the blood into the Right Atrium (RA). The pulnaoy loop begins by sending
the blood from the RA to the RV through the tricuspid valve. WhenRV contracts, blood is
pushed into the pulmonary artery. The fresh, oxygen-ricotlreturns to the LA of the heart
through the pulmonary veins (refer to Fig. 1.1).

Both of the circulatory system loops occur simultaneouslize Tontraction of the heart
muscle begins from the two atria, which forces the blood theoventricles. Then the walls of
the ventricles contract together at the same time, pumpiadplood out into the arteries. The
aorta delivers the oxygenated blood to the body, and the gnainy artery sends the blood to
the lungs to be oxygenated. Afterwards, the heart muscees| allowing the blood to flow
in from the veins, filling the atria again for the next cycléelheart rate is about 72 beats per
minute in a healthy individual, but can be increased or desad in diferent situations. It takes
about 30 seconds for each portion of the blood to complet# eyftie (from lungs to the heart

and the heart to the body, from body back to the heart and dbettungs again).



1.3 Cardiovascular Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imagimfrigue that plays an es-
sential role assessing heart conditions before and faligwi HF by providing accurate and
reproducible diagnostic information. It is therefore ddesed as the gold-standard imaging
modality for comprehensive assessments of regional armhbttysfunctions of the heart]|

Cardiac Magnetic Resonance (CMR) Images are commonly acquirednagnetic field
strength of 1.5 T (3.0 T in some centers)].[This strong constant magnetic field is applied to
align the magnetization of hydrogen atoms of the organ b&tagned. The hydrogen nuclei are
then excited by applying another magnetic field at a cert@guency (RF field) that deflects
their magnetization from this alignment. The signal enditteom these excited nuclei, when
they realign to their initial configuration, is measured by &#hsors and used to form an
image. In MR imaging, signals received from a particulasues (e.g., heart muscle, fat, etc)
are determined by the density of hydrogen atoms (protonity¢nand by two distinct MR
relaxation parameters, longitudinal relaxation time (&hyl transverse relaxation time (T2).
Proton density, T1, and T2 are significantly varied fdifetient tissue types, and are used to
generate contrast in MR images. Also, image contrast candofified by modulating the way
the radiofrequency signals are applied (the MR sequende) [

An MR Imaging sequence refers to a specific combination abfeejuency pulses, mag-
netic gradient field switches, and timed data acquisitiatfisised to generate the MRI im-
age. In CMR, for anatomic imaging and tissue characterizasipim echo sequences are used,
whereas gradient echo sequences are used to acquire cigesinvaich depict fat and blood
with high signal intensities. The most recent standardgmaltfor cardiac MR employs the
Steady-State Free Precession (SSFP) sequence. This sequenides the best contrast be-
tween myocardium (dark) and the blood in the chamber (wkdte)maging cardiac function.
For a better visualization, fat suppression sequences mapjlied to allow signal from fat to
be specifically suppressed with special pre-pulsgs [

To assess heart function, a full cardiac cycle is divided 2@-30 frames, each consisting of



10-12 slices corresponding to a specific plane of the he&r.standard imaging plane (short
axis view) used for LV assessments is perpendicular to thg &xis of the heart (apex-base).
A single cardiac MRI can therefore consist of around 200-2&fitsaxis images, making the

analysis of such a volume of data quite challenging) [

1.3.1 Clinical significance of using Cardiovascular Magnetic Resonance
Imaging

Cardiac MRI can image in any desired plane and with a nearlystncted field of view,
allowing the flexibility to evaluate abnormal structure @miricles with diferent sizes and
shapes, even those that have been extensively remodgled9]. The inherent 3-dimensional
nature of CMR makes it suitable for studying the RV, which isliénging to assess due to
its complex and variable morphology. Moreover, using sfestdte free-precession sequences,
CMR is suitable for regional assessments of the LV becausmitiges excellent intensity
contrast between blood and myocardiumé][ With regard to regional ventricular function,
CMR enables accurate assessments of regional wall motiarmbifities [ €].

Since CMR is accurate and reproduciblg 12, 8] patients can undergo several CMR scans
without being exposed to ionizing radiatio (], making it an ideal technique for monitoring
disease treatment and progression.

It is predicted that the application of CMR imaging for pateewith HF will be substan-
tially developed in the coming years’(]]. Furthermore, improvements in developing CMR
software and hardware will lead to shorter scan time andyteedly, allow the use of real-time

imaging with higher spatial and temporal resoluticit][

1.3.2 Cardiovascular Magnetic Resonance Imaging Safety

In CMR scanning, the patient is not exposed to ionizing raahatind there are no other harm-

ful side dfects reported. However, there are certain safety protaodie followed regarding



to the proximity of a strong magnetic field. Items with ferragmetic materials can be pulled
into the magnet’s core with high speed, and cause seriouagkathat restricts application of
some equipments. However, the majority of medical implanéssafe for MR scans, includ-
ing orthopedic implants, coronary and vascular stents,parasthetic cardiac valves. Patients
with embedded ferromagnet implants such as pacemakerdibriltEtors cannot be admitted
for MR scanning P0]. Currently, there are many researches on MR compatibleaintpland
devices that can change the development of MR machines ifutine. However, when MR
compatibility of a certain device is not clear, its safetgtgs needs to be checked by referring

to the information provided by the corresponding manufiact].



1.4 Diagnosis of Cardiovascular disease

The diagnosis, treatment and follow-up of LV pathologies &y on numerous cardiac imag-
ing modalities, which include echography, CT (Computed Toraply), coronary angiogra-
phy and MRI (cardiac Magnetic Resonance Imaging). Among sfidRI provides precise
information on morphology, tissue viability, muscle pesifan and blood flow, using suitable
protocols [.3].

In clinical practice, however, assessment of the LV reli@gnhy on manual segmentations
as well as visual analysis and interpretations of wall moti&everal clinical studies have
shown that visual assessments are inaccurate and subetdent 11]. Manual segmenta-
tion of the LV is prone to intra- and inter-observer varidpijltherefore, automatic assessment
methods have become a major area of reseaich |

Assessment of the LV includes three main steps:

1. Global assessment of the LVThis performed by estimating the cardiac Ejection Frac-
tion (EF), which is the most important observations in d@gjng cardiovascular diseases
because it is an important indicator of long-term prognésispatients with coronary
artery disease. Since the LV is the main pumping chamberedidart, the EF is usually

measured using information from the L\2(].

In current clinical practice, the EF is often estimated freaveral images in a cardiac
sequence using manual segmentation of the LV cavity, wisi¢cime consuming. Auto-
matic LV segmentation can also be used to compute the EF Maowbe automatic LV

segmentation techniques are challenging and computdjiaxgensive.

2. Regional assessment of the LVThis is scored following the American Heart Associa-
tion (AHA) Standard. Heatrt failure is a prevalent disease ttan be caused by various
heart conditions, in particular, Ischemic Heart Diseabi®({l [6]. The decrease of blood
supply produced by coronary artery stenosis impairs theactie properties of specific

myocardial areas. This causes a deviation from the norrgedmel wall motion and con-



tractility patterns of the myocardium, especially the L\rky and accurate detection of
LV regional wall motion abnormalities significantly helpsthe diagnosis and follow-up

of IHD [1].

In routine clinical use, cardiac function is estimated bgual assessment of the LV
motion and, therefore, it is highly observer-dependenttersitively, computer-aided
detection systems have been attempted in recent yearsentordutomatically analyze
LV myocardial function quantitatively Z0], and to classify cardiac function into normal
or abnormal groups 5[l]. The regional myocardial function is commonly scored by

following AHA standards 7], where the LV is divided into 17 segments.

3. Classification of regional LV dysfunction: Segmental classification of the LV is widely
accepted as a predictor of cardiac diseda$eClinically, the regional myocardial func-
tion is also scored using AHA standardi.[ Representative 2D cardiac slices are se-
lected to generate 17 standard LV regional segments. Eateategional segments
are assessed individually and characterizechasmal, hypokinesia, akinesia or dyski-
nesia Distinguishing these conditions from each other is oftkallenging as manual
delineation of regional segments or visual assessmenggioglinical routine which is
highly subject dependent and non-reproducikiié, {]. Functional images are subject to
noise, therefore LV segmentation and regional assessmeeatknowledged asftlicult
problems. The diiculties come from the subtle visualidirences between normal- and

abnormal-segment motions.

In this project, we propose novel methods to diagnose glabdlregional dysfunction of
cardiac LV using MR images, to provide a framework that watiat the radiologists in the

diagnosis of LV dysfunction in early stages.
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1.5 Global Assessment of Cardiac Left Ventricular Function

During the cardiac cycle, the heart contracts (systole)ratakes (diastole). When the heart
contracts, it pushes the blood out of the ventricles and vthretaxes, the ventricles are refilled
with blood. Ejection Fraction (EF) is a measure of how muaolipumps out of the LV with
each heart beat.

Left ventricular Ejection Fraction (LVEF) is an importangnostic marker used to eval-
uate cardiac function globally2[)]. Cardiac Magnetic Resonance (CMR) imaging provides
accurate and reproducible methods to perform physiolbgiadies such as EF estimation. EF
is often estimated using multiple cine short -axis MR imaityas embrace the LV. Currently in
clinical practice, EF is estimated from several images iardiac sequence using manual seg-
mentation, i.e., manual delineation of the LV cavity. Thlisitime consuming process, which
requires about 20 to 40 min per ventricle by a clinician angt@e to intra- and inter-observer
variability. Automatic LV segmentation techniques for qmuting the EF has been the subject
of significant research. In particular, commercial sofevpackages such as MASS (Medis,
Leiden, The Netherlands)1[] and Argus (Siemens Medical Systems, Germani/)] are to-
day available for automatic ventricle delineation. Altgbuyprocessing time has been greatly
reduced, the provided contour detection still needs imgmmant compared to equal manual
contour delineation. Existing LV segmentation algorithoas be divided into the following

two main categories based on prior ait3]

1.5.1 Left Ventricle segmentation based on no or weak priors:

In general, LV segmentation approaches with no or weak praoe image-driven. Existing
algorithms are based on thresholdin@3,[29, 62, 45, 28, 35], dynamic programming 1[5,
, 17], shortest path algorithms2§], pixel classification via Gaussian Mixture Modelg ]

or clustering [0], and deformable models which evolve and regularize a ctoltewing

the minimization of a functional 24, 63, 41, 3]. Based mainly on image information, these
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approaches do not require intensive training. However,rdeinoto compensate the lack of
spatial information, they generally resort to user intati@ns or several pre- or post-processing
steps to localize the LV. This section summarizes segmentatethods with weak or no prior,

including image-based, pixel classification-based andrd&ible models.

Image-Based Methods

The majority of the image-based methods involve a two-gpepsess to individually segment
the endo and epicardiumL.]. The first step focuses on detecting the endocardial boyna
ing thresholding 18, 29, 62, 45, 28, 35] or dynamic programming [/, 19, 37]. The epicardial
boundary is delineated during the second step, often basttte@ndocardium boundary using
a spatial model. The model utilizes information about myd thickness or mathematical

morphology operators.

Pixel Classification

Pixel classification methods are often used when multiplges of the same organ are avail-
able, e.g., multiple MRI or multi-modality images. The imagelivided into diterent regions
or classes that have similar feature values. Segmentaiorbe performed using either su-
pervised (with learning datasets) or unsupervised tecisiqwithout training datasets). In
[4€], Pednekaet al. used Gaussian Mixture Model (GMM), to fit the image histogramd

clustering.

Deformable Models

Segmentation methods based on deformable models use eatit@urs or snakes”}], and

are based on deforming a curve iteratively to minimize anggnfunction. The energy func-
tion consists of two main components; a regularization teomtrolling the smoothness of the
curve and a data term that includes information about olfijeandary. The curve evolution

equation is obtained by the Euler-Lagrange descent miaimoiz of energy function. For im-

12



plementation of curve evolution, the level-set framewakvidely used in medical imaging
because of its flexibility regarding topological changebe Tevel-set method facilitates seg-
mentation of multiple objects. Deformable models have hesea widely for LV segmentation
[24, 63, 41, 3].

Almost all of the methods using weak priors or none at all nequser intervention. In
order to fully automate the process, incorporating strquagial priors (e.g. relating to the the
shape of the target region) has been researched for LV segtioen Section 1.5.2. discusses

some of the existing methods within this direction.

1.5.2 Left Ventricle segmentation based on strong priors

Automatic LV segmentation is generally based on strongagaiors such as statistical shape
models or atlases. This is especially true if the shape ofalget region does not change
significantly from one subject to another, which is a reabtsassumption for the LV. Such
strong priors can relax the need for user intervention, biliteaexpense of manually building a
large training set. Methods falling within this categorg &ased on shape-driven deformable

models [17, 36, 39, 40], Active Shape Models (ASM) 46, 65], and atlas based models/
1.

Shape-driven Deformable Models

Shape-driven deformable models evolve an active ¢suvace according to the minimization
of an energy functional, comprising a set of template shégmseda priori. The evolution
equation is computed by minimization of the functional, efhicontains a statistical shape
constraint. The principle is to modify the energy functiboyaadding a new term that embeds
a shape constraint, such as a distance to a reference shedpk e1g., the mean signed distance
map as used by Paragios et al. to build a reference shéape3d]. A Probability Density
Function (PDF) or probabilistic map can be estimated bygusianual LV segmentations, and

can be used in the evolution equatiodd]
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Active Shape Models

The Active Shape Model (ASM) consists of two steps: (1) bogda statistical shape model
following a Principal Component Analysis (PCA) of a set of akg training shapes, and (2)
finding a segmentation in the current image by fitting the tsmtuto the learned model and
estimating rotation, translation and scaling parametafs b, 4]. Active Appearance Models
(AAM) are an extension of ASM by modeling gray levels 3] that include both shape and

texture variability in the training set.

Atlas Based models

In atlas based methods, an image is segmented by mappingitiicate space to that of an at-
las, often following a registration process. This techeias been used for heart segmentation
[37, 67, 11]; the principle is to register the labeled atlas onto thegemto be segmented, and
then apply the obtained transformation to the atlas, thyepbkaining the final result. The result

can then be propagated over time throughout the cardiae &yibwing the same principle.

1.5.3 The Proposed Method

In this project, we propose estimating the EF without sedgatam in real-time directly from
image statistics using machine learning techniques. Fraimale user input in only one
image, we build a statistic based on the Bhattacharyy#icmnt [14] of similarity between
image distributions for all the images in a subject data¥ét demonstrate that these statistics
are non-linearly related to the LV cavity areas and, theegfoan be used to estimate the EF
via an Artificial Neural Network (ANN) directly. The propodenethod consists of four main

steps:

1. Image acquisition
2. Building Image Statistics

14



3. Applying Artificial Neural Networks

4. Estimating Ejection Fraction
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1.6 Regional Assessment of Cardiac Left Ventricular Func-
tion

Accurate detection of segmental (regional) LV abnornmesiin MRI is accepted as a predictor
of cardiac diseases, the leading cause of death worldwide Irj clinical practice, segmen-
tal cardiac function (Fig. 1.2) is considered an essentajrbsis and follow-up component
[1]. Itis often assessedsually following the AHA standard 7], which prescribes selecting
representative 2D cardiac slices used to generate 17 sthreth LV segments. Currently radi-
ologists visually assess the 17 segments together. Thastogs, along with being subject to
high inter-observer variability 5, 53], and are subjective and non-reproducible. For instance,
the clinical study in §] showed that the mean kappa measure of detecting regiotlainoa
tion abnormalities by threefiierent radiologists could be as low ad®, the dificulties coming
from the subtle visual dierences between normal- and abnormal-segment motionsmaitit
diagnosis of LV regional dysfunction has attracted sigaifioesearch 1[5, 11, 21, 4, 14, 1(].
Regardless of promising performances of the applied tedesigthe results can still be im-
proved in terms of accuracy. For instance, the recent patibic in [21] reports an accuracy of
63.70% (base), 67.41% (middle), and 66.67% (apex) wheralWigall motion scoring is used

as reference.

1.6.1 Perior art
Echocardiography Based Methods

Most of the pioneering studies of wall motion abnormalityed#ion targeted echocardiography
[3, 9, 17], using concepts from shape statisti¢s ] and Hidden Markov Models (HMM) 17],
among others. In3], model-based shape analysis is used to automaticallgitstagall motion
abnormalities in echocardiograms. The shape model israataising Principle Component

Analysis (PCA), which quantifies the components of the valitglwithin a large data set.
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Figure 1.2: AHA standard for LV regional segments.

In this particular example, they used PCA to find the averagkeardial shape and large
eigenvectors representing the main modes of variationy. shape in the testing dataset can
be represented by a combination of average shapes and &cs|ieear combination of these
eigenvectors. The eigenvectors correspond to regiondlmatlon abnormality. Multivariate
linear regression was then applied tdfelientiate normality and abnormality of the regional
segments.

In [9], the authors built sparse shape models with localizedatiaris from four- and
two-chamber echocardiographic sequences using princgmaponent analysis and orthomax
rotations. Then, the ensuing shape parameters were usssassdocal wall motion.

In [17], Mansor et.al. investigated a HMM as a tool for regiona¢s$rcardiography wall
motion abnormality detection. HMM are especially known floeir application in temporal
pattern recognition 47] because of their ability to successfully learn the timeyirsg char-

acteristics of signals. HMM were used so that the cardiaa ohdterits the time-varying and
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sequential properties. First, the myocardial contour veasisautomatically delineated using
Quamus software. Next, each contour was divided into sitsspand several features were
extracted to evaluate the wall motion. The data was therragghinto two groups of normal
and abnormal subjects. Two HMMs were then developed for segiment. Finally, the trained

HMM was used to evaluate regional wall motion for the new setta

Magnetic Resonance Imaging Based Methods

More recently, MRI-based wall motion abnormality detecti@s been studied'}, 11, 21, 4,

, 10). In [14], Punithakumar et al. characterized myocardial-segmetioms via a nonlin-
ear dynamic model, and used the Shannortiential entropies of various segment features
(e.g., areas and radial distances) as inputs of a naive Béssfier. They investigated the
problem with a global measure based on the Shannorfe@ntial Entropy (SDE) of distri-
butions of normalized radial distances, radial velociies segment areas. As discussed in
[14], SDE measures global distribution information, and is endiscriminative in classify-
ing distributions compared to the methods that rely on elgarg measures or a fixed set of
moments.

In [21, 19)], Suinesiaputra et al. built normokinetic myocardial shapodels using short-
axis MR images acquired from healthy volunteers. They pgsedaising an Independent Com-
ponent Analysis (ICA) classifier that detects and localizasoamally contracting segments,
via a characterization of local shape variations.

Lekadir etal. [ (] focused on statistical modeling based on spatio-tempaiex-landmark
relationships.

In [11], Lu et al. proposed a pattern recognition technique byittruintra-segment corre-
lation, using a normalization scheme which maps each L\é stigolar coordinates with fixed
size, intensity level, and position.

The study in {] proposed a dierentiable-manifold analysis, followingftkerential geome-

try concepts to define a parameterization of the LV domaing¢ivis considered as a deforming
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manifold.

The authors of 5] investigated a tensor-based Linear Discriminant AnalysDA) clas-
sification that conserves the spatio-temporal structuté@imyocardial function. Radial and
circumferential strain as well as tissue-rotation angleewesed as features to train and test a
classifier via manual segmentations of the myocardium.

Most of the existing methods require delineations of theoerhdor epi-cardial bound-
aries in all frames of a cardiac sequence, using either a ahdinue-consuming processs,|

, 11, 15] or an automatitsemi-automatic segmentation (delineation) algorithi].[ As
discussed in section 1.5. segmentation algorithms arerestinsitive to user inputs giod are
computationally expensive and may result in high estirméoors [3]. Furthermore, the
segmentation results often depends on the choice of pagesred training dataset. These
difficulties inherent to segmentation algorithms prevent tblaiical adoption for segmental
motion abnormality detection. Moreover, some of the exgstlgorithms, e.g., those based on
shape analysis techniquesl], require such delineations in the training phase, whichaases

the amount of manual input and training complexity.

1.6.2 The Proposed Method

In this thesis, we propose a regional myocardial abnorgndktection framework based on
image statistics. The proposed framework requires minusal interaction, with the clinician
only needing to specify initial delineation and anatomieadmarks on the first frame. Ap-
proximations of regional myocardial segments in subseigiuames were systematically ob-
tained by superimposing the initial delineation on the oéshe frames. The proposed method
exploits the Bhattacharyya ciieient to measure the similarity between the image distiobut
within each segment approximation and the distributionhef ¢corresponding user-provided
segment. Linear Discriminant Analysis (LDA) is applied todithe optimal direction along
which the projected features are the most descriptive. Bhenear Support Vector Machine

(LSVM) classifier is employed for each of the regional myakalrsegments to automatically
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detect abnormally contracting regions of the myocardiumseBleon a clinical dataset of 58
subjects, the evaluation demonstrates that the propos#dtbdhean be used as a promising

diagnostic support tool to assist clinicians. The propasethod consists of four main steps:

1. Image acquisition
2. Building Image Statistics
3. Applying Linear Discriminant Analysis

4. Detecting Abnormality of Regional Segments
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1.7 Multi-Class Segmental Cardiac Dysfunction Classifica-
tion of Cardiac Left Ventricular Function

In routine clinical procedures, segmental cardiac fumcigoconsidered an essential diagno-
sis and follow-up component1]. It is commonly scored following the AHA standard’][
which prescribes dividing the LV into 16 regional segmee&ch assessed individually and

characterized as:

e normal

¢ hypokinesia: reduced LV contraction
e akinesia: absence of contraction

e dyskinesia : bulging out in systole

Current radiologic practices rely on visual assessmentclwls subject to a high inter-
observer variability, while being subjective and non-oehrcible [3, 5]. Furthermore, visual
assessment requires either manual delineation of the sggnmeall the frames of a subject
dataset, which is prohibitively time-consuming, or auttimdelineation, which is a challeng-

ing computational problem1f].

1.7.1 Prior Art

Automating LV abnormality scoring has been the subject ohearous recent studies as dis-
cussed in section 1.619, 4, 14, 2, 21, 15, 17]. Earlier studies of wall motion abnormality
detection used various approaches includitgdentiable manifolds 4], independent compo-
nent analysis classification? ], information-theoretic techniques! 4], tensor-based classifi-
cation [L7], and image statistics based classificaticf [

Unfortunately, to the best of our knowledge, all existingaalthms address hinary clas-

sification problem, where each cardiac segment is charaeteas normal or abnormal. Fur-
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thermore, most of the existing methods require LV segmimtan all frames of a cardiac
sequence. As noted earlier, this is either done manuallgiwikitime consuming or automati-

cally with its associated drawbackg, P 1, 15]).

1.7.2 The Proposed Method

We propose a method to solve this problem using image statisom MR images. The pro-
posed method requires minimal user-interaction with tidaéns only needing to delineate
the inner and outer boundary and two anatomical landmarkseoffV in one single frame of
cine MRI sequence. The obtained outer boundary is then sgsitaatty superimposed to all
other corresponding frames with no changes. The amounboftibhside the regional LV cav-
ity is modeled by Bhattacharyya statistics between didfiobuestimated inside the LV cavity
of first frame and regional segments in the rest of the fraffilee. muscle inside the regional LV
is modeled using the same idea from Bhattacharyya statlstivgeen distributions estimated
inside the LV myocardium of the first frame and regional segimén the rest of the frames.
A Support Vector Machine (SVM), is then used to find the catieh between the estimated
image statistics and fierent regional abnormalities of the LV. The results show tih@image
statistics can be used toffdirentiate among various LV abnormalities. The algorithrovsh
comprehensive results on 1720 short axis segments, obtained from 58 subjects. The mhetho
diagnoses the condition of LV regional segments witl14% accuracy. The proposed method

consists of four main steps:

1. Image acquisition
2. Building Image Statistics
3. Applying Support Vector Machine

4. Classifying LV Regional Segment Dysfunction
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1.8 Thesis Objectives

The main objective of this work is to provide a platform toiassadiologists in diagnosis
of LV abnormalities. We developed a new automated tool to imitine diferent steps of
the diagnostic procedures, to automatically assess cafdiection. This platform has the
potential to be further developed into a product for diagmoscardiac dysfunction, providing
radiologists with an accurate and fast system that can bgrated with MRI scanners.

Specific research objectives are listed below:

e Develop a software system for the diagnosis of LV dysfumctiat would be compatible

with MRI scanners.

¢ Provide clinicians with a fast and accurate diagnostic that assesses the LV function

globally with a minimal user input.

e Presenting MRI features that could be used to directly assgdgac functions in terms

of global dysfunction without the need for segmentation.

e Develop a tool to estimate the regional cardiac functiomiattically with a minimum

user-intervention.

e Speed up the procedure of automatically assessing segr¥€rg removing the need

for segmentation while exceeding the accuracy of currestesys.

e Classify LV segmental dysfunction to diagnose abnormality.
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1.9 Thesis Outline

1.9.1 Chapter 2: Global Assessment of Cardiac Left Ventricle Function

Using Estimation of Ejection Fraction

This chapter describes how we design a diagnostic tool fuyajlassessment of cardiac func-
tion using estimation of EF. In clinical routine, EF is oftestimated by either manual or auto-
matic segmentation of the LV in number of short axis CMR Imadesyeneral, the segmen-
tation algorithms discussed in section 1.5 require cane$elr interventions ayior intensive
manual training, along with a heavy computational load.tfr@nrmore, the ensuing segmenta-
tion results depend significantly on the choice of a set cdupaters and training data, causing
high errors in the EF estimation. Thesdfidulties inherent to segmentation algorithms limit

the automatic estimation of the EF in routine clinical use.

While existing techniques are labour intensive, we beliéa there are other character-
istics of the images that can be computed with lgBsrg but that nevertheless correlate with
the EF. One such technique that we describe in chapter twasisdoon machine learning tech-
nique, which removes the need for image segmentation. We éaiimage statistic for every
image in a subject dataset using a simple user input in aesinghge. We show that there
is a non-linear relation between these statistics and thedwty areas (cf. Figs. 2.7 -2.12).
Therefore the EF can directly be estimated using the statist real-timevia an Atrtificial
Neural Network (ANN). We Perform a comprehensive evaluata 20 subject datasets and
demonstrate that the estimated EFs are very well correlaitbdthose obtained from manual

segmentations.
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1.9.2 Chapter 3: Regional Assessment of Cardiac Left Ventricle Func-
tion

Regional assessment of cardiac LV function is based on theesggtion of the LV in either
the entire cardiac cycle or several frames. Indeed, theretaer image characteristics that can
be estimated with minimum user interaction. These chaniatitess correlate with segmental
cardiac dysfunction. One such technique that we descrilobapter three is based on image
features and machine learning, which removes the need foredéng the endo- and epi-
cardial boundaries in all the images of a cardiac sequenadirf§ from a minimum user input
in only one frame in a subject dataset, we build, for all tiggaeal segments and all subsequent
frames, a set of statistical MRI features based on a meassmidrity between distributions.
We demonstrate that, over a cardiac cycle, the statiséedlifes are related to the proportion
of blood within each segment. Therefore, they can charaetsegmental contraction without
the need for delineating the LV boundaries in all the franvés first find the optimal direction
along which the proposed image features are most deseryga\Linear Discriminate Analysis
(LDA). Then, using these results as inputs to a Linear Supgestor Machine (LSVM) clas-
sifier, we obtain an abnormality assessment (ngiabalbrmal) of each of the standard cardiac
segments in real-time. We report a comprehensive expetahewaluation of the proposed
algorithm over 928 cardiac segments obtained from 58 stshjg€ompared against ground-
truth evaluations by experienced radiologists, the pregaagorithm yielded a competitive

performance, with an overall classification accuracy 0088 and a kappa measure of 0.73.

1.9.3 Chapter 4: Multi-Class Segmental Cardiac Dysfunction Classifica-
tion

The purpose of this chapter is to investigate the more geaedechallengingnulti-classprob-
lem, where each regional segment is classified into one ofdlasses: (1) normal; (2) hypoki-

netic; (3) akinetic; and (4) dyskinetic. We obtain a simpsewuinput from a single frame for
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the given subject. Using this input we build for all the regabsegments and all subsequent
frames a set of statistical MRI features based on a measunmaitdrity between distributions.
Over a cardiac cycle, these statistical features are tetatéhe proportion of blood and my-
ocardium within each segment, and can therefore charaeteegmental cavitsnyocardium
contraction without the need for delineating the LV bouieam all the frames. Finally, using
these features as inputs to a multi-class Support VectohMaqSVM) classifier, we obtain
a 4-class assessment of each segment. We report a compvelrexperimental evaluation of
the proposed algorithm over 928 cardiac segments obtansed $8 subjects. Compared to
ground-truth labels assessed by an experienced radigltdggsoroposed algorithm yielded an

overall 4-class accuracy of 141%.

1.9.4 Chapter 5: Summary, Contribution and Future Directions

This chapter summarizes the contribution of this projent discusses the limitations were
faced at diferent stages. Suggestions and future directions are iedhedextend this project

to be improved and applied as a clinical diagnostic tool 1p k&nicians.
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Chapter 2

Global Assessment of Cardiac Left
Ventricle Function Using Estimation of

Ejection Fraction

2.1 Estimation of the Cardiac Ejection Fraction From Mag-

netic Resonance Image Statistics

The cardiac ejection fraction (EF) depends on the volum@tian of the left ventricle (LV)
cavity during a cardiac cycle, and is an essential measutieeirliagnosis of cardiovascular
diseases .

In routine clinical use, EF is often estimated from the m&segmentation of several im-

ages in a cardiac sequence, which is a time consuming praeedisi discussed in section. 1.5,

1This chapter is based on three papers:
1) Afshin, M., Ben Ayed, |., Punithakumar, P., Islam, A., GgéA., Ross, |., Peters, T., Li, S., “Global Assess-
ment of Cardiac Function using Image Statistics in MRI", lidadl Image Computing and Computer Assisted
Interventions ( MICCAI 2012), Vol 7511, pp. 535-545 (2012).
2) Afshin, M., Ben Ayed, |., Islam, A., Goela, A., Ross, |.tBs, T., Li, S, “Estimation Of The Ejection Fraction
From Image Statistics”, IEEE International Symposium oarB¢dical Imaging (ISBI), pp. 824-827 (2012).
3) Afshin, M., Ben Ayed, I., Islam, A., Goela, A., Ross, I.texs, T., Li, Sh., “ Estimation of the Cardiac Ejection
Fraction From Magnetic Resonance Image Statistics”, useleond revision in IEEE Transaction on Biomedical
Engineering.
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in recent years automatic LV segmentation techniques aé tsscompute the EF. Existing
LV segmentation algorithms are based on traditional tephes, such as thresholding, region-
growing, edge detection and clustering, [0, 8], and energy minimization techniques such
as graph cuts 7, 13], active contourfevel-sets §, 3], as well as active appearance and shape
models []. A recent comprehensive review of cardiac image segmentaan be found in
[13]. Segmentation algorithms generally require a careful usgalization, intensive training,
and a heavy computational load. The segmentation resydendesignificantly on the choice
of a set ofad hocparameters and training data, which may yield high errotiseércomputation
of the EF. These dliculties inherent to segmentation algorithms prevent theraatic segmen-
tation methods from being used in routine clinical practise most of the existing techniques
require intensive user interaction, we believe that thezeother image characteristics that are
computationally less expensive but correlate strongly wie EF.

In this chapter, we propose a technique to estimate the Eetljirfrom image statistics
via machine learning in MRI. From a simple user input in onglgnmage, we build a statis-
tic based on the Bhattacharyya @bgent [L4] of similarity between image distributions for
all the images in a subject dataset (200 images). We denatmstrat these statistics are non-
linearly but monotonically related to the LV cavity areaslaginerefore, can be used to estimate
the EF via an Artificial Neural Network (ANN) directly. A comghensive evaluation over 20
subjects demonstrates that the estimated EFs correlatgdvedl with those obtained from
independent manual segmentations. Furthermore, coropangith estimating EF with recent
segmentation algorithms show that the proposed methodie&thayvery competitive perfor-

mance.
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2.2 Estimating Left Ventricle Volumes from Image Statistics

2.2.1 Building Image Statistics

Let 7 be a cardiac MRI sequence containihframes, each comprising slice, Tij: Qc
R2 - R+ with (i, j) €[1...1] x[1...J]. To introduce how we build an image statistic related
to the LV cavity area for each image j, (i, ) € [1...1] x[1...]], let us consider the following

definitions.

e Letl be a reference image which we use for a simple user inputr (lefiae middle
image in Fig. 2.1 b). For instance, in the experiments ofstusly, we used imaggy 1 in each

subject dataset.

o Letlin,I'out:[0,1] — Q denote two simple planar closed curves (e.g. squares)-super
imposed by the user on the reference imageefer to the middle image in Fig. 2.1 b), one
placed within the cavity (the blue curve in Fig. 2.1 b) and dtiger enclosing the cavity (the

red curve) which are identical for each patient.

Let us now superimpose systematically (without additirs&r €fort) It Onto each of the
images in the subject dataset, as shown in Fig. 2.1, Fig.&IFg. 2.3. Then, we compute
for each image a statistic based on the Bhattacharyyfiicieat of similarity between image
distributions (refer to Fig. 2.5, Fig. 2.4, and Fig. 2.6)dafemonstrate thahe obtained

statistics are related to the areas of the.LV

Let Rr c Q be the region enclosed within, I" € {T'in,[out}, andPr,, the kernel density

estimate of the distribution of an image 7 j, (i, j) € [1...1] x[1...J], within regionRr:

er K(z—1)dx

o 2.1)

Prr1(2) =

1The number of frames is typically equal to 20 or 25.
2The number of slicekis typically equal to 10.
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(b)

Figure 2.1: User input: (a) frame 1 (slices 1,7, and 10)I'(bfthe blue curve within the cavity)
andI'oyt (the red curve enclosing the cavity) are given by the usenerréference image (the
middle image).T'in is used solely in the reference image to compRe |, wheread oyt is
superimposed systematically (without additional udéwsr® to all the other i images (refer to
Figs. 2.2 and 2.3) to compul&._ r;,-

Tout>

(b)

Figure 2.2: Superimposing red curve in End-systole: fran{slices 1,7, and 10)T oyt IS
superimposed systematically (without additional uskarg to all the slices in the 7th frame.

Whereag, is the area inside regidRr
aR, = dx (2.2)
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(b)

Figure 2.3: Superimposing red curve in End-diastole: fr@&@éslices 1,7, and 10) oyt is
superimposed systematically (without additional uskarg to all the slices in the 20th frame.

K is the Gaussian kernell{]:

1 Y
K(y) = ——=exp =2 (2.3)
V202

We consider the distribution of the image within the regioclesed by the blue curve in
the reference imagePérinJ) as an approximation of the distribution within the cavigd the
distribution of the region enclosed by the red curve in eawge’ j (Pr .z7;;) @S an approx-
imation of the distribution of the entire left ventricle. Naonsider the following measure of

similarity between these two distributions in each imdgeg (i, j) € [1...1]x[1...J]:

B =B(Pry, 1. PRry.7i))- (2.4)

where the Bhattacharyya déieient B(f,g) measures the amount of overlap (similarity) be-

tween two distributions andg:

B(f,g):fw Vfgdz (2.5)
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There are dierent choices for estimating the similarity measuremetwéen two distributions
e.g.Bhattacharyya céiecient, Kullback-Leibler, Hellinger distance and Mahalhisodistance.
Among others, Bhattacharyya dfeient has been chosen as the range of the Bhattacharyya
codficient is [0; 1], with O indicating no overlap between the disitions and 1 being perfect
match. The fixed [0; 1] range of the Bhattacharyyafioent g&fords a conveniently practical
appraisal of the similarity.

More importantly, we expect that measté is related to the cavity area in the correspond-
ing image7; j. This is demonstrated experimentally by the typical exaniplFigs. 2.4-2.6,
the corresponding variations of the cavity areas in Figg, 29, 2.11, and the Bhattacharyya
statistics in Figs. 2.8, 2.10, 2.1Rote the strong similarity between the variations of the gavit
areas (Figs. 2.7, 2.9, 2.11) and those of the Bhattacharygtistics (Figs. 2.8, 2.10, 2.12)
Such similarity is reasonable since the more the distiomstiof the cavity and the LV overlap,

the higher the cavity area.
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Figure 2.4: Computing image statistics for the frames oesliqdmiddle slice): (a) reference

image (red curvelyy, blue curve:Ti,); (b): frame 7 (end-systolic) and (c) frame 19 (end-
diastolic); (d), (e), and (f) the corresponding intensitgtidbutions and Bhattacharyya mea-
sures g'). We observe that the variations gf are similar to the variations of the LV cavity

areas. Forinstance at the end of systole (the middle coluthe}smallest cavity area coincides
with the lowest Bhattacharyya measure.
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Figure 2.5: Computing image statistics for the frames ofeslic(apical slice): (a) frame 1
(the red curvel oy, is superimposed systematically to all the images withaditeonal user
effort); (b): frame 7 and (c) frame 19; (d), (e), and (f) the cep@nding intensity distributions
and Bhattacharyya measur@d ). Again, we observe that the variationsg are similar to
the variations of the LV cavity areas.
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Figure 2.6: Computing image statistics for all the imageslioeslO (basal slice): (a) frame
1; (b) frame 7 and (c) frame 19; (d), (e), and (f) the corresimog intensity distributions and
Bhattacharyya measuregs/).
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2.2.2 Training Phase: A Statistical Bhattacharyya Cofficient Model

To compute the area inside the LV cavity for each single 20giena the cardiac MR sequence,
we map each imagé; j to a Bhattacharyya statistig-l. Let Py, be a 200-dimensional row
matrix containing the Bhattacharyya statistics for a tragnsubjecime M (M is the number

of training subjects):

Pry!

I
™
=
.
=
N
£

m e {1..,M}. (2.6)

Thus, the Bhattacharyya statistics frdvh training subjects can be viewed as a cloudvbf
points in a 200-dimensional space. Following a principahponent PCA analysis4], one
can assume that these points lie within a lower-dimensispate. This amounts to mapping

eachP,,m=1...M, to a lower-dimensional poimt, as follows:

t
Pm = Pmeant Qr iy = Pmeant Z rIin’ (2.7)
i=1

wherePmean Q = (Q1 Q2...Q), rm = (r}, r2, ....r{)T andt are defined as follows:

e Pneanis the mean of Bhattacharyya row matrices:

1 M
I:)mean: M Z I:’m (2'8)
m=1

e Q=(Q1Q2..Q)isthe matrix of the first unit eigenvectors of the following 260200

covariance matrixsp (how to fixt will be discussed later):
1 M
_ Z T
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wheredPpy, = Pm— PmeaniS @ vector measuring the deviation of each patient’'s Bhiadtiyya
matrix from the mean.

e Vectorrm=(r} r2,...rk)" contains scalars weighting the contribution of each otthe
eigenvectors in (2.7).m is obtained by the closed-form solution of the followingdeaquare-
error minimization:

'm = argmin||Qr — (Pm— F)mear)”2 (2.10)
r

This yields:

r'm= Q" (Pm—Pmean (2.11)

whereQ™ is the pseudo inverse matrix Q.

e How to choose:tThe eigenvectors dp are the orthogonal components that span the
200-dimensional training space and their correspondiggreialuest;,i = 1...200, measure
how significant these components are. The larger the eigenvihe more significant the
corresponding eigenvector. To obtain theost significant eigenvectors, we need to find a
t <200. A common method for calculatings to choose the smallest number of eigenvectors,

so that the ratio of the sum of the correspondieggenvalues to the sum of all eigenvalues,

t .

izl/lI

200,.’
2ia i

(2.12)

is suficiently close to one 4]. This means that the sum of the variances alongt threst
significant eigenvectors corresponds to &isiently large proportion of the total variance of

all the data. In this study, we obtatitby satisfying the following condition:

itzl/li
<200 2 0.95. (2.13)
izp i

The choice ot and its éfect on the results will be further discussed in the expertmen
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2.2.3 Training Phase: Statistical Area Model

Now assume the LV cavity areas in each cardiac MR sequenbe tfdtining set are computed
using manual segmentation obtained by an expert. Let uessphe areas of each training

subject as a point in a 200-dimensional space:

Tm = [Tml,,TmJ,,Tmlo] Wlth

Tr)

ati .. &l . a20,j]

m e {L..,M}. (2.14)

m

Following a PCA analysis similar to that used for the Bhattagye statistics, we map each

point Ty, m=1... M, to a lower-dimensional poirt,, as follows:
Tm = Tmean+ Cbm, (215)
whereT nmeaniS the mean of area row matrices:
1M
Tmean= M ;Tm’ (2.16)

C = (C1 C, ...Cy) is the matrix of the first unit eigenvectorE; of the following 200x 200

covariance matrix (the value bfs similar to the one obtained for the Bhattacharyya stasti

M
St = %Z dTm dTm', (2.17)
m=1

with dTm = Tim— TmeaniS @ vector measuring the deviation of each matrix of areas fthe

mean, andp, = (b}, b2,....b%)T a weighting vector given by:

bm = C+(Tm—Tmear), (218)
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with C* denoting the pseudo inverse ©f
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2.2.4 Procedure

The proposed technique involves two stages, one corresgptml training and the other to

testing. The principle steps of each stage are as follows:

Training Stage:

This stage consists of the following steps.

¢ Following a PCA analysis over the Bhattacharyya statistiosfM training subjects,
we compute y, according to equation (2.11) for each training submet[1... M].

¢ Using manual segmentations of thetraining subjects and following a PCA analysis
of the ensuing LV cavity areas, we complng according to equation (2.18) for each subject
me[l...M].

e Using an Artificial Neural Network (ANN) 17] and vectors ,, andby, (me [1... M])
as training data for the ANN, we learn a non-linear relatipdetween the Bhattacharyya

statistics and the LV cavity areas. This amounts to findingtiadi functionF that verifies:
bmn=F(m) VYme[l...M] (2.19)
Further details on the estimation of the fitting functionlw# given in the next section.

Testing Stage:

The purpose of this stage is to estimate the LV cavity area f@w testing subject not included
in the training set. This stage consists of the followingpste

e LetPphewa single row matrix containing the Bhattacharyya statisbcshe new subject:

Prew = [Pnewl,nupnewj,~--,Pnew10] with

- Lj N 20,
Prew = new --- Pnew --- Pnew

(2.20)
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with ,Bi,;jewdenoting the Bhattacharyya statistic corresponding to edag of the new sub-
ject. FromPpew, We compute the following vector:

I'new= Q" (Pnew— Pmean (2.21)

e Fromrnew We infer the following vector using fitting functiok (further details on

estimatingF will be described in section 2.2.5):

Pnew= F(rnew) (2.22)

e Finally, the matrix of estimated LV cavity areas for the nawbject is obtained from
I new as follows:

Thew= Tmeant Cbnew (2.23)

where

Thew = [Tnewla---,TneV\),---,TnewlO] with

- o
Toed = |abl, . &l ane\,{,] (2.24)

andaif;jewdenotes the computed area of the cavity corresponding tgaihg of the new sub-

ject.
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2.2.5 Fitting Function Approaches

The key point in the proposed technique is finding a relahignbetween the compact repre-
sentation of image features,{) and the compact representation of LV cavity ardgg.(While

various technique exist for such data fitting, we used Aréfisleural Network (ANN).

Artificial Neural Network Estimation of Left Ventricle Cavity Areas

We constructed an ANN to determine the nonlinear relatignbbetween the Bhattacharyya
codficients (refer to Figs. 2.8, 2.10, 2.12) and the correspaniihcavity areas (refer to Fig.

2.7, 2.9, 2.11). Following a back propagation ANN, a powenfiachine learning technique
[5], our feed-forward network consists of five layers, thregdlen, one input, and one output

(refer to Fig.2.13 for an illustration).

400

3501

3001
©
L 2501
<

200y

1501

100 L L L
0 5 10 15 20
Frame Number

Figure 2.7: A sample example which shows the variationset¥hcavity areas of apical slice
obtained from manual segmentations.

Our network estimates the non-linear mappkgvhich we used in equation (2.19). We
assumer is a nonlinear transfer function consisting of two hypeibtdingent functions and
a linear function, a common choice in the neural networkdiiere []. As illustrated in
Fig. 2.13, the resulting network consists of five layers, mpait and one output containing

5 neurons each, both based on the linear functiqr) (= x), as well as three hidden layers
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Figure 2.8: A sample example which shows the variationseBthattacharyya image statistics
of apical slice. We observe that these statistics are maaily related to the manually obtained
LV cavity areas depicted in Fig. 2.7.
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Figure 2.9: A sample example which shows the variationseftthcavity areas of a midcavity

slice obtained from manual segmentations.

containing 50, 25 and 50 neurons and based on the hyperangiemnt, hyperbolic tangent and

linear functions respectively-].

Let INPUT andOUTPUT denote the training input and output of the neural network re

spectively:

INPUT =[(r)™ L. (tm) S s Pm) 7Y (2.25)
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Figure 2.10: A sample example which shows the variationk®@Bhattacharyya image statis-

tics of a midcavity slice. We observe that these statistieman-linearly related to the manually
obtained LV cavity areas depicted in Fig. 2.9.
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Figure 2.11: A sample example which shows the variations®tV cavity areas of basal slice
obtained from manual segmentations.

OUTPUT =[(b1)™%,....(bm) ™% ..., (bm) Y] (2.26)

To validate this procedure we employ a leave-one-out agpraghere the test dataset was
excluded from the training data. For the current testingesttlolataset, transferred subject area

statistics bnew) Were estimated from equation (2.22) using the learnedlinear mapping-
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Figure 2.12: A sample example which shows the variationek®@Bhattacharyya image statis-
tics of basal slice. We observe that these statistics ardinearly related to the manually
obtained LV cavity areas depicted in Fig. 2.11.

(refer to the illustration in Fig. 2.15). The matfxew representing the areas of the LV cavities,

was estimated from equation (2.23).
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Input layer Hidden layer Output layer

INPUT
OUTPUT

Figure 2.13: The ANN consists of one input layer, three hididgers, and one output layer.

Training Phase

PCA
ANN
Trained ANN

Figure 2.14: The training phase.
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Testing Phase
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Figure 2.15: The testing phase: the estimated Bhattachatgyiatics are fed to the network
and the corresponding LV cavity areas are predicted.
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Figure 2.16: Variation of the volume of the LV cavity in eacdint beat.

2.3 Estimating the Cardiac Ejection Fraction From Image

Statistics

Let Vs andVy denote the smallest (end-systolic) and largest (endadigstolumes of the LV

in a cardiac cycle, respectively ( Fig. 2.16). The cardiacipn fractionEF, is given by:

_ Vd_VS

EF
A

(2.27)

The diference in the numerator in equation (2.27) measures the blwame pumped by the
left ventricle. We compute®¥/s and Vg by integrating the computed LV cavity areas in the

sagittal direction.
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2.4 Experimental Evaluations and Comparisons

2.4.1 Image Acquisition

A set of 2D short-axis cine Magnetic Resonance (MR) images adutfjects was acquired
through the cardiac cycle on &T scanner with fast-imaging employing steady-state atqui
tion (FIESTA) image sequence mode. The acquisition parmetere as follows: TR2.98

ms, TE=1.2 ms, flip angle30 degree, and slice thicknes) mm. Each subject’s dataset

consisted of 20 frames, each comprising 10 slices.

2.4.2 Experimental Results

We used the proposed method to automatically compute thelMyareas, thereby estimating
the LV cavity volumes and ejection fractions of 20 subjedisach subject’s dataset contains
20 frames, each comprising 10 slices. We proceeded to a-teee®ut validation approach,
where the training used to compute the LV cavity areas of sablfect is based on the other
19 subjects 1 = 19). Estimated areas were used to compute the LV cavity veduofh each
subject. Then, the obtained volumes and ejection fractiegr®e evaluated quantitatively by
comparing them with those obtained from independent masegrhentation by an expert.

In Fig. 2.17, we plotted the computed LV cavity areas (alhfes and slices) for all 20 pa-
tients versus those obtained from independent manual sggtimas. We included the identity
line, which indicates an excellent correlation between madly and automatically computed
areas.

Fig. 2.18 depicts the computed LV cavity volumes for all 2@8¢y@s versus those obtained
from the independent manual segmentations, as well as émditig line, which indicates an
excellent correlation between manually and automaticiyputed volumes.

We used several statistics to evaluate the conformity etvilee manually and automat-
ically computed Areas and Volumes (the results are listethile. 2.1). First we estimated

the correlation ca@icient, R, which measures the correlation betweeand f; e is a vector
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Figure 2.17: Automatic versus manual cavity areas.
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Figure 2.18: Automatic versus manual cavity volumes.

containing the manual estimations of areas (or volumes)faadhe corresponding automatic
estimation. The range dt is [0, 1], where 1 indicates a perfect fit between the vectors. The
proposed method yielded correlation fft@ents of 08930 and M1258 for the LV cavity ar-
eas and volumes, respectively, indicating a high confgrinétween manual and automatic
estimations.

We used a two-tailed t-test to estimate the conformity betweeand f, which yielded a
non-significanP —values of 022834 and (1943, indicating that automatic estimations of areas

and volumes are not significantlyfférent from those obtained from manual segmentation.
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R(e, f) | P—valudt-tes)
Area | 0.8930 0.2834
Volume| 0.91258 0.1943

Table 2.1: Statistical measures of the conformity betwadnmatically and manually com-
puted areas and volumes.

In the next step, the estimated cavity volumes were usedtimats theEFs for all 20
subjects. LeEFp be a vector containing the 20 automatically estimdés, andEFy be a
vector of the same size containing tB&s obtained form manual segmentations. Fig. 2.19
depictsEFa and EFy, and confirms that th&Fs computed with the proposed method are
very close to those obtained from independent manual segirears.

We evaluated the conformity between the manually and autoatlgg computedEFs (the
results are listed in Table. 2.2). First we evaluated theetation codicient, REEFa, EFnm).
The proposed method yielded a correlationfioent of 09635, which indicates a high con-
formity between manual and automatic ejection fractions.

We used a two-tailed t-test to estimate the conformity betwaanually and automatically

estimated ejection fraction, which yielded a non-signiftda— valueof 0.1778.
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Figure 2.19: Automatic and manuaFs in 20 subjects.

We then evaluated the error quantitatively and compatgtivecomputing the norm of the
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R(EFa, EFyn) | P—valugt—tes)
0.9635 0.1778

Table 2.2: Statistical measures of the conformity betwaednmatically and manually com-
putedEFs.

method mear{Dif fgg) | stdDif fgg) | CPU(S)
The proposed method 0.0160 0.0163 0.2087
graph-cut segmentation  0.0965 0.0922 9.62
level-set segmentation 0.1095 0.1253 49445

Table 2.3: Errors (std and mean) and computation time (iaorss) with the proposed method
and with graph-cut and level-set estimation of the EF basetthe recent segmentation algo-
rithmsin [2, 3].

difference betweeBFa andEF y:

Dif f g = |[EFA— EFp]| (2.28)

Furthermore, the proposed method was compared with conptiteEF obtained based
on the graph-cut and level-set segmentation algorithmsjrs]] Table. 2.3 reports the mean
and standard deviation of the error as well as the computatioe for the proposed method
and the segmentation algorithms i, £], demonstrating theE Fs obtained with the proposed
method are more accurate and computationally less expgetigin those obtained with graph-
cut and level-set segmentatior?, [3]. The proposed method estimated tBE in real-time

taking Q209 per subject using a non-optimized MATLAB code on a 2.Z@tdchine.

Fig. 2.20 depicts the errors (20 subjects) obtained withptisposed method (red curve),
the graph-cut segmentation (blue curve), and the levesaginentation (green curve). The
results are based on non-optimized 2D segmentation tacbsignd we assume that error has
been integrated in the estimation of the EF . The proposebadstielded a much lower curve

and, therefore, a significant improvement in accuracy.
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Figure 2.20: Errors (20 subjects) obtained with the propaaeomatic method (red curve),
the graph-cut segmentation (blue curve), and the levetagmentation (green curve). The
proposed method yielded a much lower curve and, therefosggraficant improvement in
accuracy.

2.4.3 Hfect of the choice of the number of the most significant eigenvec-

tors (t) on the results

In this study, we computed the number of the most significagererectors t) by satisfying
condition (2.13). In our experiments, this condition yedid = 5. To further evaluate thefect

of t on the results and confirm the relevance of condition (2\8)ran the algorithm over 29
uniformly-spaced values @fin the interval [2; 30]. Fig. 2.21 depicts the mean error asnef
tion oft. We observe that starting frota- 5, the mean error does not change significantly. This
means that the five most important eigenvectors carry tteermdtion we need, and confirms

the relevance of condition (2.13).

2.4.4 Htfect of the choice of the number of neurons on the results

The proposed ANN consists of three hidden layers. The examhia €fect of the choice of
the number of neurons on the results, we proceeded to thifeeedit sets of comprehensive
experiments, each corresponding to varying the number wfoms in one hidden layer and
fixing the number of neurons in the two other layers.

In the first set of experiments, we ran the algorithm over lifoumly-spaced values of
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Figure 2.21: Mean error as a function of the number of mostitnt eigenvectors.

the number of neurons in the first layer. The values are inrtteaval [5;60]. For this set of
experiments, the number of neurons was fixed equal to 25 isehend layer and to 50 in
the third layer. Fig. 2.22 depicts the mean error as a funatiothe number of neurons in

the first layer, showing that a choice of value of this numlapra¢ to 50 or 40 yields the best

performance.

Fig. 2.23 illustrates the second set of experiments, dagithe mean error as a function
of the number of neurons in the second hidden layer, whichasied over 6 uniformly-spaced
values in the interval [5; 30]. We fixed the number of neuranthe first and last layers equal
to 50. This set of experiments showed that choosing the nuaflmeurons in the second layer

equal to 25 led to the best performance.

The same procedure was followed for the last hidden layeffix&d the number of neurons
in the first and second layers equal to 50 and 25, respectiVabn, the number of neurons in
the third layer was varied over 11 uniformly-spaced valuethe interval [5; 60]. Fig. 2.24
demonstrates that the best performance is reached by dgaie number of neurons in the

last layer equal to 50.
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Figure 2.22: Mean error as a function of the number of neuirotise first hidden layer.
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Figure 2.23: Mean error as a function of the number of neuoiise second hidden layer.

2.4.5 Hfect of the user-provided input on the results

The proposed method relies on an approximate user-provabadization of the LV cavity
(refer to the red curves in Fig. 2.4). Our method assumesgb@eprovides an initial box close
to the LV in a single 2D image. Such localization plays a esakmle in estimating the image
features. We evaluated the robustness of the proposed dnettiorespect to variations in the
user-provided input. Fig. 2.25 depicts the mean error abthwith the proposed method as
a function of the size of the region (the box) enclosed withmuser-provided red curve. We
started with an initial box which has approximately the sarea as the LV cavity. Then, we
evaluated the algorithm by rescaling the box from 1 to 5 timkethe initial size. Fig. 2.25

depicts the mean error as a function of the size of the rediamerest. The bigger the size of

65



0.8f

mean(Diff EF)
o
o

o
IS

o
()

10 20 30 40 50 60
number of 3rd hidden layer neurons

Figure 2.24: Mean error as a function of the number of neuirotise third hidden layer.
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Figure 2.25: Mean error as a function of the size of the useviged region of interest.

2.4.6 Typical examples

Figs. 2.26 - 2.28 show automatically and manually computedsafor apical, basal and mid-
cavity slices of a single object as a function of the frame bem

Figs 2.29-2.31 depict automatically and manually comput#dmes for three subjects as a
function of frame number. Fig. 2.29 shows the best estimatiadhe 20 subjects, which corre-
sponds to the lowest error, i.e., the lowest absolutiedince between manually and automat-

ically computed volumes. Fig. 2.30 corresponds to the mmditror (the medium estimation
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Figure 2.26: Automatic versus manual cavity areas for acahglice of a single subject.
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Figure 2.27: Automatic versus manual cavity areas for acamty slice of a single subject.

in the 20 subjects), and Fig. 2.31 to the highest error (thestestimation in the 20 subjects).
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Figure 2.28: Automatic versus manual cavity areas for allsdisa of a single subject.
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Figure 2.29: Automatic versus manual cavity volumes: thst base in the 20 subjects.
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Figure 2.30: Automatic versus manual cavity volumes: thdiarecase in the 20 subjects.
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Figure 2.31: Automatic versus manual cavity volumes: thestvoase in the 20 subjects.
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2.5 Conclusion

This study investigated a real-time method for computiregdirdiacE F directly (without seg-
mentation) from image statistics via machine learning. sehienage statistics were based on
the Bhattacharyya céigécients of similarity between image distributions, whichresehown to

be non-linearly related to the LV cavity areas. An ANN wasdigefind the relation between
the image statistics and the corresponding LV cavity areasach subject dataset. A com-
prehensive experimental evaluation over 20 subjects dstradad an excellent conformity of
the automatically estimatdelFs to those computed from manual segmentations. Furtheymore
comparison with graph-cut and level-set estimation ofEftebased on recent segmentation
algorithms confirmed that the proposed method can yield gpetitive performance while
reducing significantly the computational load.

Further future work includes application of the proposedhoé to the estimation of other
cardiac functions such as muscle thickening and to the tieteof cardiac abnormalities.
Also, it is worth noting that the proposed method is basedhencbnsistency of the image
distributions within the cavity acrossftirent frames. Therefore, it can readily extend to other
modalities where such consistency is verified as is the acas€T, for instance. It would be

interesting to assess the applicability of the method toatitiels other than MRI.
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Chapter 3

Regional Assessment of Cardiac Left

Ventricle Function

3.1 Regional Assessment of Cardiac Left Ventricular My-

ocardial Function via MRI Statistical Features

Early and accurate detection of segmental (regional) Lefithcle (LV) abnormalities in Mag-
netic Resonance Imaging (MRI) is important for diagnosinglicar disease as discussed in
chapter 1. In routine clinical use, cardiac function isrestied by visual assessment of the LV
function, therefore it is observer-dependent and nonatide. Alternatively, an automatic,
fast and accurate diagnosis method of the LV function isrddsiComputer-aided detection
systems have been attempted in recent years in order to atitalty analyze the LV my-

ocardial function quantitatively 2[J], and to classify cardiac function into normal or abnormal

1This chapter is based on three papers:
1) Afshin, M., Ben Ayed, I., Punithakumar, P., Law, Max W. Klam, A., Ross, I., Peters, T., Li, S., "“Assessment
of Regional Myocardial Function via Statistical Featune$/R Images”, Medical Image Computing and Com-
puter Assisted Interventions (MICCAI), Vol 6893, pp.10741(2011).
2) Afshin, M., Neshat, H.R., Islam, A., Goela, A., Ross, i,,&., “Regional Assessment of Cardiac Left Ventricle
from MRI with Minimum User Interaction”, Radiological Saty of North America ( accepted in RSNA 2012).
3) Afshin, M., Ben Ayed, I., Punithakumar, P., Islam, A., GgéA., Ross, |., Peters, T., Li, S., “ Regional As-
sessment of Cardiac Left Ventricular Myocardial Functige MRI Statistical Features”, under revision in IEEE
Transaction on Medical Imaging.
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[51]. In clinical practice, the regional myocardial functimaommonly scored by following
AHA standards 7], where the LV is divided into 17 segments. Therefore, negid.V ab-
normality analysis is desirable for clinical purposes. Ascdssed in section 1.6, the existing
regional heart function analysis methods are based onniation theoretic measures and an
unscented Kalman filter 1], shape models with localized variation$§)] pr using diferen-
tiable manifolds {], an independent component analysis classifiel], [a pattern recognition
method based on intra-segment correlation],[a hidden Markov model for local wall motion
classification based on stress echocardiograplty}, nd a tensor-based classification to con-
serve the spatio-temporal structure of the myocardiumrdedtion [L7]. Most of the existing
methods require either extensive user interaction or coatipnally expensive segmentation
algorithms. However, despite such dfoet, the problem is still challenging, with a large room
for improvements in regard to accuracy.

The purpose of this chapter is to investigate a real-timehinaelearning approach which
uses image features that can be easily computed, but thattheless correlate well with the
segmental cardiac function. We build image features fothallregional segments in a dataset
from a simple user input in only one frame. The MR image fesfware based on a measure
of similarity between distributions . We determine thagdé statistical features are correlated
to the segmental blood pool, the portion of blood within eaegment, and can therefore be
used to describe segmental contraction without requitileglly segmentation in all frames.
We find the optimal direction along which the estimated imbaggures are most descriptive
using Linear Discriminate Analysis (LDA). Then, a Linearpport Vector Machine (LSVM)
classifier is used to assess abnormality dysfunction of eat¢he LV regional segments in
real-time. We demonstrate a comprehensive evaluationeoptbposed method over cardiac
segments obtained from 58 subjects. The proposed algoréhutts in an overall accuracy of

86.08% compared to ground-truths obtained by expert raglists.
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3.2 Identifying 16 Segments in Only One Frame

This step requires a user-provided delineation of the eadd-epicardium boundaries in only
a single frame, which we refer to as treferenceframe. Following the AHA standard?],
we use such a simple user input to divide the heart into 16datansegments. Then, we
superimpose the obtained segments systematically (withaditional user £ort) to all the
other frames.

Constructing the 16 segments follows standard AHA presonipt [2], and is based on the

following steps:

e Dividing the LV into equal thirds perpendicular to the longjsaof the heart, thereby
generating three circular LV sections: apical (Fig. 3.1naig-cavity (Fig. 3.1 b), and
basal (Fig. 3.1 c). As prescribed id]]we use only three representative slices containing

the myocardium in all 369

¢ Dividing the basal part into six segments of°68ach, as shown in Fig. 3.2(c). We
used the attachment of the right ventricular wall to the Lep¢sl wall) as anatomical

landmark to identify the septum.
¢ Dividing the apical part into four segments of°a€ach, as shown in Fig. 3.2(a).

¢ Dividing the mid-cavity part is into six segments of°6€ach, as shown in Fig. 3.2(b).
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(a): apical (b): mid-cavity (c): basal

Figure 3.1: User-provided delineation in one single franeéefence imagés) for three repre-
sentative slices: (a) apical, (b) mid-cavity and (c).

(a): apical (b): mid-cavity (c): basal

Figure 3.2: The regional segments superimposed on refergragel s.
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3.3 Constructing Statistical Features from MRI Images:

We propose to use image statistics as input features tafglasgional myocardial segments

into normal and abnormal.

3.3.1 A synthetic Example:

Let us first describe the concept for the simple synthetitioncexample in Fig. 3.3, which
depicts several frames, each containing two regions, sewdistc (which we denote regiof)
and a black ring enclosing (which we denote regiog); i is an integer denoting the frame
number (> 1).

During a simulated cardiac cycle, regignis shrinking and expanding, mimicking the LV
blood cavity during a cardiac cycle, whereas regiony; remains constani(Uy; corresponds

to the whole image domaivil). Let Q; denotes the intensity within frame

Qi(p)=1 VYpex

Qi(p)=0 Vpey; (3.1)

Let P(./x) andP(./x Uy;) denote respectively the probability distributions okimsity within

regionsx; andx; Uy;:

P(Q =1/x)=P(Q1=1/x1)=1 Vi
P(Qi=0/x)=P(Q1=1/x1)=0 Vi
P(Qi =1/xUy) = % Vi

A-aj

P(Q =0/xVy)=—— Vi (3.2)

whereg; denote the area of regiofwithin time framei, andA the area of the image domain.
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Now let us consider the Bhattacharyya fiment introduced in the previous chapter that

measures the amount of overlap (similarity) between twwidigions f andg:

Bz(f.9)= ), Vf(@9@ (33)

zeZ

whereZ is the set of values over which the distributions are defif@dthis synthetic example,
Z ={0,1}. Note that the range of the Bhattacharyyafticeent is [Q 1], with O indicating no

overlap between the distributions and 1 indicating a pérfesich.

Let us assume that we have a segmentation (delineationgiofrein only the first frame,
i.e., only x1 is known (fori > 2, x; is not segmented). For eack 2, we can show that the

following image statistic is directly related to the areaegionx;:

Bio.1)(P(./x1), P(./% UYi)) = YOx P(0/x Uyi) + 1x P(1/x UY;) = (3.4)

&
A
Notice that computation of the image statistic in the rightid side of (3.4) does not need a
segmentation oX; for i > 2; it depends only ox; and the whole image in the subsequent time
steps. Nonetheless, it is related to the areas of regioasd, therefore, contains information
about the dynamics of these regions. This makes sense leeteusore overlap between the
distribution of regionx; and the whole image, the larger the proportion of pixels mitkgion

Xi.

We will use this concept to build cardiac-segment staggtiat correlate well with regional
LV function, while removing the need for comprehensive segtations of all the images in a

cardiac sequence.

78



Figure 3.3: A simple synthetic example which demonstrates $ome segmentation-free im-
age statistics correlate with the dynamics of a moving megide larger circle is a fixed region
while the size of the smaller circle varies. The smallerleiftustrates the cavity motion.

3.3.2 Building Segmental Image Statistics for Cardiac MRI Images:

Let 7 be a cardiac MRI sequence containihrames, each comprising slice$ 7'sj: Q c
R2 - R+ with (s,j) €[1...9 x[1...J]. For each frame, we haveregional segmen%s?(i,j,
with (i,j) € [1...1]x[1...J].

Let us first consider the following basic definitions and tiotss:

e | is the reference frame, which consists of three 2D imabggs=1,...,3, each asso-
ciated with a diferent slice level (apical, basal, and mid-cavity). The nefee frame

corresponds to the end-diastolic phase.

e LetT} I3, :[0,1] — Q denote respectively the endo and epi-cardial boundariés in

(refer to Fig. 3.4.a).

e LetI':[0,1] — Q denote the boundary of regional segmientthe reference frame (refer

to Fig. 3.5 for an illustration).

Now, for eachi, let us superimpose systematically (i.e., without addaiouser €ort)
segment boundaty : [0,1] — Q onto the rest of the frames as shown in Fig. 3.4, and compute

the corresponding image statistics (Figs. 3.6, 4.2, 3.8).

1Jis typically equal to 20 or 25.
2Sis equal to 3; we used 3 representative slices following tHéAtandard J].
3The number of regional segment3 per subject is equal to 16.
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(b): framel (c): frame7 (d): framel9

Figure 3.4: (a): Manual segmentation of the reference ¢kastolic) frame. (b): Regional
segments of the reference frame. (c-d): regional segmétite ceference frame superimposed
systematically (without additional useffert) onto the rest of the frames.

To formally introduce the expression of the image stati&iiceach regional segment at

each time step, let us consider the following general dedimst

o LetRr c Q denote the region enclosed within culve € {I'S IS, I}

e Let Pra denote the kernel density estimate of the distribution ofraage A within

regionR:

_RKEADO el X @5

PrA(2

whereag is the area of regioR

aR = dx (3.6)
%+
andK is the Gaussian kernell]f
KO) = ——exp iz 3.7)
= . :



Tout I
\ r
@ (b)

Figure 3.5: (a) Reference imagg (b) Endo and epi-cardial boundariesl g (c) boundary of
regional segmeritin the reference frame.
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Figure 3.6: (a-c): Regional myocardial segments of an apliza superimposed on subsequent
frames. (d-f): The corresponding image statistics.

We assume the following:

e The reference-image distribution within the region inSﬁﬁﬁ(Per,ls) approximates the

cavity distribution;
¢ The distribution of each imaggsj within I approximates the image distribution within
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7(7’1 ca 'K7,7

(b)

0 50 100 150 0

0 50 100 150
i

(d) )
B =0.91593 ... B"7=076843 ... B"9=080551

Figure 3.7: (a-c): Regional myocardial segments of a midtgalice superimposed on subse-
guent frames. (d-f): The corresponding image statistics.

7(1,1 . 7(1’7 . ‘7(1,19

intensity

(d)
B =0.91593 ... p+7=076843 ... p+19=080551

Figure 3.8: (a-c): Regional myocardial segments of a baga sliperimposed on subsequent
frames. (d-f): The corresponding image statistics.
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regional segmerik j, i.e.,

Prri 7o & P j.1s; (3.8)

As we shall see shortly, this approximation can Heaively used to compute, without
the need for segmentation, an image statistic that coeehatell with the amount of

blood within segmen ;.

Now, as a statistical feature for each regional segmiént we consider the following

Bhattacharyya similarity measure between distributions:

B =Bx+(Prr, s PR 1) (3.9)

In a way conceptually similar to the synthetic example weussed earlier, we expect that fea-
tures™! is related to the proportion of blood within regional segir&n;. We further demon-
strate experimentally such a relationship by the typicaegles in Figs. 3.6, 4.2, 3.8, which
show that the more overlap (similarity) between the distidns of the cavity and regional
segmentkj j, the larger the proportion of blood within the segment. Efiere, we anticipate
that over a cardiac cycle, the set of featysel j € [1...J], can characterize segmental cavity
contraction. Another way to see how featugt$ can describe segmental function is to con-
sider the extreme case where the regional segment does wet msuch case, the proportions
of blood is constant over a cardiac cycle, and so are theriesatu

Fig. 3.9 summarizes the procedure of estimating the statistnage-based features.
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Image acquisition

/\

Manual segmentation
of reference image &

Tin, Iﬁout, ri

SuperimposingI" systematically
(without segmentation) on 7

. - . o . |
Distribution of 1 s inside I Distribution of 7;insidel

Image features g"1

Figure 3.9: The procedure of estimating the statisticabeabased features.
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3.4 Dimensionality Reduction via Linear Discriminant Anal-
ysis

The Bhattacharyya statistics fromM training subjects can be viewed as a cloudvwpoints
in the J-dimensional Euclidian space. We proceeded to a Linearibigtant Analysis (LDA)
[23, 8, 22, 24] to reduce the dimensionality of the image features. Fahgw.DA [23], one
can assume that these points lie within a lower-dimensiepate. Consider the following

definitions and notations:

e Let feature vectogl = [8"1,...,",...,5")] be aJ-dimensional row matrix containing

the Bhattacharrya statistics for a given training subjech e {1,...M}.

e Assume that each feature vect,éym belongs to one of two class€g andC,, whereCy
andC, represent respectively normality and abnormality coaditf the corresponding

regional segment.

e Letue be the mean of feature vectors in cl&see {1,2}:

1 .
ne=5- 2, B (3.10)
whereNe is the number of the feature vectors in cl&gs

e Letu be the mean of all feature vectors:

1 M

)

=15 P (3.11)
m=1

The between-class scatter mat8ix [6] is defined as:

2
So =55 D Ne Gte=4) (o4, (312)
e=1
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and the within-class scatter matrix] [Sy is defined as:

2
Su= D) O B Br=p) (313)

e::I',Eimece
whereN is the number of the feature vectors in both classes.
In LDA [6], a projection vectolG is chosen so as to maximize the following ratio:

G'S,G

Gopt = argmayg ———
opt g )GGTSWG

(3.14)

Maximizing such a ratio seeks to reduce dimensionality @preserving as much of the class
discriminatory information as possible. In the 2-classecaA finds a vectoiGyp € RIx1

(1 < J) that maps original dal;én toa scalaﬁir;p:

Gopt Em E%J —)ﬁlmpe %1

Bhap=GdpiBm (3.15)

Equation (3.15) is equivalent to projecting the data ontma that maximizes the class sepa-
rability of the scalars.

In the next step, we use a Linear Support Vector Machine (L$¥iksifier to classify the
projected features ensuing from a given testing subjeotmormal or abnormal. Fig. 3.10

summarizes the overall classification procedure.
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image features ground-truth

linear SVM

decision boundary

Figure 3.10: Overview of the training phase.
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3.5 Linear Support Vector Machine Classification of Regional

Segments

This step consists of classifying regional myocardial sexgi® with a Linear Support Vector
Machine (LSVM), given projected featurﬁgqp(refer to Fig. 3.11). Let;[{",;p,tm), m=1,..,M,
be an annotated training set, with denoting the labels associated \Aﬁ,ﬁp. Variablet, has
two possible valueg € {-1,1}), 1 corresponding to the abnormal-segment class-drtd the
normal-segment class. The two-class LSVM classifier evatudne sign of a linear function
the form [L.3, 10, 16, 15, 2]:

y(X) =W ¢(x) +b, (3.16)

whereg¢(x) denotes a fixed feature space, dnuhdicates a bias parameter. The signy(f)
indicates the class of input We assume that the training features are linearly separadl,
there exists at least one choicelothat satisfiesy(ﬁi,;p) > O for features having, = +1 and
y(,Bi;]p) < 0 for features havingy, = —1. SVM approaches this problem through the concept of
the margin, which is defined to be the smallest distance letwes decision boundary and any
of the features (for an illustration, refer to Fig. 7.1 if])[ To find the decision boundary, we
need to maximize the margin, i.e., the perpendicular digtarmaracterizing the feature-point
that is closest to the decision boundari]. [Thus, the maximum-margin solution is sought by
solving (for further details, refer to2], page 327):

argmaxv,b{imir}n[tm(wT¢(ﬁir;p)+ b)]} (3.17)

[Iwl

The direct solution to this optimization problem is quitealtenging. However, one can resort
to some assumptions and modifications so as to convert (B1/)ninimizing a quadratic
function subject to a set of linear inequality constraimtgjch can be solved via a standard

Lagrangian-multiplier method. Further details can be tbum[2] (chapter 7).

We trained the LSVM classifier by providing the training-edtures /Si:p) and the cor-
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responding ground-truth annotatioRs(Fig. 3.10 depicts an illustration). Then, the optimal
hyperplane is computed by solving (3.17), and is used asiaidedoundary to classify new

(testing-subject) features into normal or abnormal segsien

image features

LDA

projected features

trained

< Linear SVM ;

Estimation of LV

normality/abnormality

Figure 3.11: Overview of the testing phase.
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3.6 Experiments

3.6.1 Data Acquisition:

The data contain 583 short-axis image datasets (i.e., apical, mid-cavity aashl), each con-

sisting of 20 functional 2D images acquired from 21 normal &7 abnormal hearts, using

1.5T MRI scanners with fast imaging employing steady staggiiadion (FIESTA) mode. The

details of the datasets are presented in Table. 3.1. Thecdagast of images from 41 male

and 17 female subjects, and the average age of subjects3is 5820 years. The temporal

resolution AT) is 451+ 8.8 ms.

Table 3.1: Details of the datasets used in the evaluationeoptoposed method.

Description Value

Number of subjects 58

Scanner protocol FIESTA

Patient ages 16 — 79 years
Short-axis image resolution (256256) or (512 512) pixels
Number of frames (K) 20

Temporal resolutionAT) 29 -76 ms

Pixel spacing

(0x0.7x10.0) — (L7%x1.7x120) mm

X Endocardial wall
4 Epicardial wall

Y Insertion Points

-+
=
x X
> X
% +
. %
K +
PR
x
X
+ L+
+
*

Figure 3.12: User input to specify initial segmentation andtomical landmarks on the first

frame.
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For each subject, three slices were respectively chosem dgmcal, mid-cavity and basal
frames, andnatomical landmarkeere identified manually on the first frafhgsee Fig. 4.3 for
an illustration). A cubic spline interpolation was usedaopleN points along each endo- and
epi-cardial boundary. The higher the valueNagfthe better the estimation accuracy. However,
the computational complexity of the algorithm increasethW. The apical, mid-cavity and
basal slices were automatically partitioned, respegtiviato 4, 6 and 6 segments following
the standard in 7], which results in 16 segments per subject. Th® $§&gment, apex, was not

analyzed.

The results of 928 myocardial segments (58 subject§ segments) were compared with
a single ground truth classificatiin We classify a segment as abnormal if that segment is
hypokinetic, akinetic or diskinetic. Among the 37 abnormabjects, 12 were diagnosed with
infarction, 10 with dilated cardiomyopathy and 15 with war$ heart diseases including resus-
citated cardiac arrest, coronary artery occlusion, cardimolic cerebrovascular accident and

pseudo-aneurysm.

3.6.2 Linear Discriminant Analysis:

Figs. 3.13, 3.14 and 3.15 show the projected feat,ﬂigﬁ,snbtained following the LDA trans-
formation for apical, mid-cavity and basal segments. Fig.33lemonstrates that the apical-
segment transformation is more discriminative than thdstained for basal and mid-cavity
segments, which can be explained by the fact that the imegebdtion estimation within

apical segments is noffacted by the occurrences of papillary muscles in the blo@d po

4As suggested by 7], the attachment of the right ventricular wall to the LV isedsto identify and separate
the septum from the LV anterior and inferior free walls.

SEach myocardial segment was marked following a binary seitieer normal or abnormal. The ground truth
was built by three experienced radiologists, each of whonotaied a dferent portion of the data set. Among
the 928 segments, 579 segments were marked as normal and 8d8amal.
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Figure 3.13: Projected apical featurﬁ’g]g,) obtained following the LDA transformation.

3.6.3 Linear SVM Classifier:

We used 16 LSVM classifiers, each assessing one of the 1Gstbsehments (normabnormal).
Figs. 3.16, 3.17 and 3.18 show the decision boundaries #patrate normal and abnormal
classes. Fig. 3.16 depicts the projected features of fowabpegments for each of the 58
subjects; the total number of apical segments is 232 (129aand 103 abnormal). Fig. 3.17
shows the projected features of a total number of 348 midycaegments (209 normal and
139 abnormal); each of the 58 subjects has six mid-cavitgnsets. Fig 3.18 depicts the pro-
jected features of 348 basal segments (221 normal and 12rrahl). The larger the distance

between the support vectors of normal and abnormal clagsesnore reliable the decision

92



mid-cavity segment:1 mid-cavity segment:2 mid-cavity segment:3

0.3 ; 02 0.25
+ Normal ' + Normal + Normal ,
0.3 * Abnormal + Abnormal | * 0.2 * Abnormal
i 015
2025 | " 3 y 015 i
9 g H g i
2 ' 201 N 2 {
iv ! e
3 i g 3
3015 5 005 5 005 '
g | 2 ! 2 ;
o] o] 0
: 01 1 3 ! 20 |
; 0 : i
005 ' i -0.05 .
0 -0.05 -0.1
(a) (b) (c)
mid-cavity segment:4 mid-cavity segment:5 mid-cavity segment:6
01 04 02
+ Normal * Normal + Normal ||
* Abnormal | * + Abnormal | + 0.5 * Abnormal
0.05 ' 0.35 : '
0 ¥ 0 o 01 ;
g H 0 ; 0 l
3 3 3
g 0 i 5 03 % 005 i
& | & } g
kel kel t kel ;
g i g g 0
5-0.05 5025 5 i
9 L L H
0 o H ]
g & i £ -0.05 :
-01 + 02 § +
! ; -01 ;
-0.15 015 -0.15
(d) (e) ()

Figure 3.14: Projected mid-cavity featurgééﬁ) obtained following the LDA transformation.

boundary. The decision boundary obtained for apical setgnemore reliable than those ob-
tained for mid-cavity and basal slices, which is expectagrgthe fact that the image features

within the apical segments are ndlexted by the papillary muscles.

3.6.4 Classification Performance:

We used two criteria to measure the performance of eachifidasg1) the ROC (Receiver
Operating Characteristic) curves with the correspondin@alArea Under the Curve) and (2)
the Bhattacharyya measuré] fo assess the discriminative power of the features. Furtbee,

we assessed the classifier performance with a leave-omkefthe-subjects-out approach,
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Figure 3.15: Projected basal featur,é%& obtained following the LDA transformation.

i.e., by training our algorithm using2 of the dataset and testing on the remaining data.

ROC/AUC

The ROC curves depicted in Figs. 3.19, 3.20, 3.21 demoedinatperformances of the pro-
posed method, with the best performance being obtainegfoalsegments. Table 3.2 reports

the corresponding AUCs.
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Figure 3.16: Decision boundaries and support vectors fatical segments.

Bhattacharyya measure

We used the Bhattacharyya distance metric to evaluate thiapumetween the distributions of

features over normal and abnormal classes:

B= 1= VNG Ta).

(3.18)

wherefy(y) and fa(y) are the distributions over normal and abnormal heartpeasely. The
higher8, the more discriminative the classifier. The Bhattacharyg&adces obtained in Table

3.2 are consistent with the R@Q&JC evaluations.
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Figure 3.17: Decision boundaries and support vectors fonth-cavity segments.

Bhattacharyya distance

AUC metric (B)
Apical 0.9571 0.7776
Mid-cavity 0.9368 0.6882
Basal 0.9152 0.6336

Table 3.2: The AUCs corresponding to Figs. 3.19, 3.20, 3.2lLtha corresponding Bhat-
tacharyya distance metric®) of normajabnormal distributions. The higher the values, the
more discriminative the ability of the classifier.
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Figure 3.18: Decision boundaries and support vectors Bb#sal segments.
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Figure 3.19: ROCs for apical segments: The closer the curtieetteft-hand top corner, the
better the classification performance.
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Figure 3.20: ROCs for mid-cavity segments: The closer theecto the left-hand top corner,
the better the classification performance.
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Figure 3.21: ROCs for basal segments: The closer the cunieetteft-hand top corner, the
better the classification performance.

99



Classification Accuracy

We evaluated the classifier performance by computing theracyg, specificity and sensitivity

over all the datasets:

Tp+T T LT
P¥ N speC|f|C|ty:WN, sensmwty:FF> (3.19)

accuracy= ———-,

whereTp denote true positives (number of segments correctly ¢iedsas*Abnormal”),
andTy true negatives (number of segments correctly classifiétlasnal’ ). The total num-
ber of“Abnormal” and“Normal” segments ar® andN, respectively.

Table 3.3 reports an overall classification accuracy of B 0with a sensitivity of 93.96%
and a specificity of 81.82%. The highest performance waseaelifor apical slices with

89.75% for accuracy, 94.10% for sensitivity, and 86.29%sfmacificity.

Sensitivity (%) Specificity (%) Accuracy (%)
Apex 94.10 86.29 89.75
Mid-cavity 94.07 80.16 85.72
Base 93.72 78.45 84.02
Overall 93.96 81.82 86.09

Table 3.3: Classification accuracy using a leave-one-ibiithe-subjects-out approach. The
proposed method achieved an overall classification acgufe®6.09%.

Visual assessment by radiologists

Abnormal detection Normal detection Total

The proposed method

Abnormal detection 348 89 437
Normal detection 33 458 491
Total 381 547 928

Table 3.4: Comparisons between the proposed method and essgssment scoring by ex-
perienced radiologists. The proposed method yielded a&kapgasure of 0.73, substantial
agreementwith radiologists’ results.

Table 3.4 reports comparisons of the obtained results tml/scores by experienced radiol-

ogists. We computed the Kappa statistiés] [between the proposed method and radiologists’
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findings as follows. The observed percentage agreement is:

348+ 458
p(a) = W =0.87, (320)

while the overall probability of random agreement is:

381 437 547 491

P(®) = 928 928" 928 928~ *°* (321)
Therefore, the Cohen’s kappa is:
p(a) - p(e)
K= —————~ % — 073, 3.22
- p(© (3.22)

a value which indicates a substantial agreemen hetween the proposed method and visual

scoring.

3.6.5 Comparison with other methods

Method User-inputReg | Accuracy| Time Dataset slice
Proposed method mnl-first 0.86 real-time| 58 subjcine MRI | A,B,M
Punithakumaet.al. [14] | mnl-first+ Reg 0.87 62 sec | 58 subjcine MRI | A,B,M
Suinesiaputrat.al. [19 | mnl-first+ Reg 0.78 N/A 53 subjCEMRI | ABM
Garcia-Barnest.al.[4] mnl-first+Reg 0.85 N/A 28 subj Tagged MR A,B,M
Suinesiaputrat.al. [21] mnl-all 0.77 N/A 89 subj cine MRI | A,B,M
Luetal. [1]] mnl-all 0.86 N/A 17 subj cine MRI B

Qianet.al. [15] mnl-all 0.87 N/A 22 subj Tagged MR A,B,.M

Table 3.5: Comparisons of the proposed method with recestiegimethods of regional my-
ocardial abnormality detection. All the existing methodguire either manual or automatic
(registration-based) segmentations of several framesandiac sequence.

Table. 3.5 compares the proposed method with several @bent methods with respect to
the user-inpysegmentation requirements, accuracy, processing timeepéthe used data sets
and types of the processed slices. In the second columngtbeyen “manual-first” means that
the corresponding method requires a manual segmentatibe @fst frame, and “manual-all”

means that manual segmentations are required for all fraA@enym “Reg” means that the
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corresponding method requires an inter-frame registrigitocess to find the LV boundaries
in all the frames of a sequence. In the last column, A, B and Notkeapical, basal and mid-
cavity respectively. All the methods in Table. 3.5 analypeal, basal and midcavity slices
except the method proposed by et al. [11] which shows preliminary results only for basal
slices.

User-inputgSegmentationsThe proposed method requires manual segmentation of a sin-
gle frame as user input. On the contrary, Punithakushaal. [14] use a manual segmentation
of the first frame, and propagate such a manual input via atragjon algorithm to obtain the
epicardial boundaries in all the remaining frames. SiryJéBuinesiaputrat. al. [19] use
manual segmentations in end-diastolic and end-systealioéds followed by a registration algo-
rithm to find the myocardium boundaries in the remaining #amGarcia-Barnest. al. [4]
use manual segmentation of the first frame followed by a Bispiegistration applied the the
myocardium boundaries in all frames. et al. [11] show preliminary results for only basal
slices; in this method, each of the epicardial boundariebiained from manual mouse clicks
and spline interpolation. Similarly, the approaches i1, [L5] need manual segmentations of
all the frames as user inputs.

Accuracyspeed:The meta-analysis of accuracy in table 3.5 shows that theosexl method
can yield a competitive performance while reducing sigaiiity the computational load and

user dforts.
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3.7 Conclusions

We proposed a real-time machine-learning and image-statiased approach to automating
the detection and localization of segmental (regional) caydial abnormalities in MRI. Un-
like the existing techniques, the proposed method did rqptire delineations of the endo-
andor epi-cardial boundaries in all the frames of a cardiac eseqge. Starting from a mini-
mum user input in only one frame in a subject image, for allrégional segments and all
subsequent frames we built a set of statistical MRI featuasgth on the Bhattacharyya mea-
sure of similarity between distributions. We demonstratedsynthetic and real examples
that, over a cardiac cycle, such statistical features daéeckto the proportion of blood within
each segment. Therefore, they can characterize segmentahction with significantly less
computation and user input. We sought the optimal directilmmg which the proposed im-
age features are most descriptive via a Linear Discrimidanatlysis. Then, using the LDA
results as inputs to a Linear Support Vector Machine classilie obtained an abnormality as-
sessment of each of the standard cardiac segments inmealfile reported a comprehensive
experimental evaluation of the proposed algorithm over@f8liac segments obtained from 58
subjects. Compared against ground-truth evaluations bgreqred radiologists, the proposed
algorithm yielded an overall classification accuracy of0886 and a kappa measure of 0.73.
We further reported meta-analysis comparisons with sevecant methods, which showed
that the proposed method can yield a competitive performargle significantly reducing the

computational load and usefterts.
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Chapter 4

Multi-Class Segmental Cardiac

Dysfunction Classification

4.1 Multi-Class Segmental Cardiac Dysfunction Classifica-

tion via Statistical MRI Features

Automatic detection of regional cardiac abnormality hasergly sparked an impressive re-
search #ort as discussed in chapter 1. Furthermore, most of existiathods require de-
lineations of the endo- ayal epi-cardial boundaries in all the frames of a cardiac eaqge.
Former investigation of regional abnormality detectiordiechocardiography3] 9, 17], us-
ing different techniques including shape statisti¢s 9] or hidden Markov models1[’]. Re-
cently, MRI modality based techniques have been used as dntoutins for cardiac regional
assessment and therefore have attracted research attgntip 11, 21, 4, 10, 14]. Cardiac
MR imaging has great potential for diagnosis of the LV fuontas examination is not limited

by an acoustic window, and cardiac MR imaging allows an egtiaeimyocardial evaluation

1This chapter is based on the paper:
1) Afshin, M., Ben Ayed, I., Islam, A., Goela, A., Ross, I.,tés, T., Li, S., “Automatic Diagnosis of Seg-
mental Cardiac Dysfunction via Statistical Features inr8hgis MRI ", under revision in IEEE Transaction on
Biomedical Engineering.
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with excellent spatial resolution/]. As discussed in section 1.7.1, all existing algorithms ad
dressed &inary classification problem, where each cardiac segment is cteaized as normal
or abnormal.

The purpose of this study is to investigate more the geneodll@m, where each regional
segment is classified into one of four classes:ndimal (2) hypokinetic(3) akineticand (4)
dyskinetic Starting from a simple user input in only one frame in theusege, we build a set
of statistical MRI features based on a measure of similamstyvben distributions for all the
regional segments and all subsequent frames. We demensitedtover a cardiac cycle, the
statistical features are related to the blood and myocargitoportion within each segment,
and can therefore characterize segmental cemitgcardium contraction without the need for
LV segmentation in all the frames. We use these featurespagsirior multi-class Support
Vector Machine (SVM) classifier, and obtain a 4-class assessof each segment. We report
a comprehensive experimental evaluation of the propoggdlitim over 928 cardiac segments
obtained from 58 subjects. These results are compared tomd+outh labels obtained by

experienced radiologists with an overall 4-class accucdid. 14%.
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4.2 Methods

The proposed method consists of three main steps:

¢ |dentifying 16 regional segments in one single frame, uss®y-provided inner and outer

LV boundaries.

e Computing image statistics as input features to a multisc8éM classifier for each of

the 16 segments of a given subject.

¢ Classifying regional segments into 4 classes: (1) normalhypokinetic; (3) akinetic;

and (4) dyskinetic.

4.2.1 Identifying 16 Segments in Only One Frame:

This step constructs the regional segments following tigelations that have already been

discussed in section 3.2.

4.2.2 Building Segmental Statistical Features from MRI Images

We propose to use image statistics as input features foritlgmalsis of regional myocardial
segment dysfunction.

Let 7 be a cardiac MRI sequence containiiidgrames, each comprising slices Isj:
QcR? >R with(sj)e[l...9x[1...]].

For each frame, we haveegional segment%?(i,j,(i, PDell...1]x[1...]].

Consider the following definitions and notations:

¢ | is the reference frame, which consists of 3 reference imagesach associated with a

different slice level (apical, basal, and mid-cavity).

1Jis typically equal to 20 -25.
2Sis typically equal to 10.
3The number of segments per subjdgti$¢ equal to 16.
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e LetT? andI§ , denote the endo- and epi-cardial boundarieksirespectively (refer to

Fig. 4.2.b).
e LetI':[0,1] — Q denote the boundary of segmén(refer to Fig. 4.2.c).

Now, let us systematically superimpose segment bouridasgto the remaining frames as
shown in Fig. 4.1 (b-d), and compute the corresponding inséajestics. Here, we describe the
method in detail for one mid-cavity segment (Fig. 5). Howetlee procedure is the same for

all the others.

(b): framel (c): frame7 (d): framel9

Figure 4.1: Identifying 16 regional segments in the refeeeftame. (a): user-provided seg-
mentation of the reference frame. (b): 16 regional segmeintse reference frame. (c-d):
regional segments of the reference frame superimposeehsgstally to the rest of the frames.

Let Rr c Q be the region withiT', I € {T'S TS, I'}, andPr,.a the kernel density estimate

of the distribution of an imagé € 75 within regionRr [1]:

K(z-A(x))dx
Prra(2) = e P : (4.1)

with K the Gaussian Kernel:

exp 22, (4.2)
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Figure 4.2: (a-c): mid-cavity regional segments superisepioon subsequent frames. (d-f): the
similarity measures between the cavity region in the fiestie and the regional segments in all
other frames. (g-i): the similarity measures between theaagdium region in the first frame
and regional segments in all other frames.

andagr the area of regioR:

aR = f dx (4.3)
R
We assume the following:
e The reference-image distribution within the region indide(Pr,s 1) approximates the
cavity distribution;
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Figure 4.3: User input to specify initial segmentation andtamical landmarks on the first
frame.

btwn =

e The reference-image distribution of the region betvﬂﬁﬁandl"gut (PRrS 1sS.L.Rrs
btwn

Rrs — Rp%) approximates the myocardium distribution.

out

Now, as features for each regional segmg&hy, we consider the following similarity
measures between the distribution of theth frame () within the segment and the cav-

ity/myocardium distributions:

L _ B(PRys 12+ PRy, 74): (4.4)

= B(PRrgtwnJS, PRry.Is))> (4.5)

where:

B(1.9) - [ VT@u@ez @6)

B is the Bhattacharyya cfiecient [L4] whose range is [A], with O indicating no overlap
between the distributions and 1 indicating a perfect match.
Feature;«ﬁ?i(;j andﬁir;]j are related to the proportion of blood and myocardium witkgfional

segmentX; j. We illustrate such a relationship experimentally by theidsl example pro-
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vided by Fig. 5, which shows that the more overlap betweenligteibutions of the cavity (or
myocardium) and regional segmeidt j, the larger the proportion of blood (or myocardium)
within the segment. Therefore, we anticipate that over diaarcycle, the set of 1“eatur6§s,j
and,Birhj, j €[1...J], can characterize segmental cayatyocardium contraction. Another way
to see how featurgﬁi%j andﬂi,;]j can describe segmental function is to consider the extrese c
where the regional myocardium does not move. In such casepritportions of blood and

myocardium are constant over a cardiac cycle, and so aredberés.

4.2.3 Assessment of Regional Segment Dysfunction Using Multi-Class

Support Vector Machine

We used the well-known one-versus-all multi-class SV 13, 10, 16, 15, 2] to classify each

regional segmenti € [1...1],into four classes:

1. normal
2. hypokinetic
3. akinetic

4. dyskinetic.

For each segmerit the input of the SVM classifier is a feature vector of the farms:
[ul;ul.], whereu. andul, are twoJ-dimensional row matrices containing the Bhattacharrya
statistics:ul, = { 'CJ} andul, = { 'mJ} The output is a labdle {1,2, 3,4}, which corresponds to
one of the four classes. In the training phase, we proceedeldave one-subject-out approach.
We used the standard parameters of the multi-class S¥Mahd a radial-basis function as a

kernel type.
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4.3 Results and Discussion

4.3.1 Data Acquisition

The data comprise 58 short-axis image datasets (i.e., apical, mid-cavity aashb, each
consisting of 20 functional 2D images acquired from 21 ndramal 37 abnormal hearts, ac-
quired on a 1.5T MRI scanners with fast imaging employingdtestate acquisition (FIESTA)
mode. The details of the datasets are presented in Table. TB4 data consists of images
from 41 male and 17 female subjects, and the average agejettils 523+ 15.0 years. The

temporal resolutionAT) is equal to 451 + 8.8 ms.

For each subject, three slices were respectively chosem dgmcal, mid-cavity and basal
frames, andanatomical landmarksvere identified manually on the first frafi{eefer to Fig.
4.3). The apical, mid-cavity and basal slices were autarabyi partitioned, into 4, 6 and
6 segments respectively, following the AHA standarz], {vhich results in 16 segments per

subject. The 1% segment, apex, was not analyzed.

The results of 928 myocardial segments (58 subject® segments) were compared with
a single ground truth classification. The ground truth wak by three experienced radiolo-
gists, each of whom annotated dfdrent portion of the data set. Among the 928 segments,
537 segments were marked as normal, 283 segments were naarkgdokinetic, 73 segments
as akinetic and 25 as diskinetic. Among the 37 abnormal stdh)j&2 were diagnosed with
infarction, 10 with dilated cardiomyopathy and 15 with wa$ heart diseases including resus-
citated cardiac arrest, coronary artery occlusion, cardiwolic cerebrovascular accident and

pseudo-aneurysm.

4As suggested by 7], the attachment of the right ventricular wall to the LV isedsto identify and separate
the septum from the LV anterior and inferior free walls.
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Figure 4.4: Accuracy(%) for each of the 16 regional segmeFite average accuracy over all
16 segments is equal to .14%.

4.3.2 Classification Performance

We assessed the performance of the proposed algorithmiwéé triteria: the accuracy, con-

fusion matrix, and bull's eye plot.

Accuracy

The accuracy for segmenis the number of cases classified correctly divided by tatahlimer
of the cases. Fig. 4.4 reports the accuracy for each of thedents (The display follows the
bull’'s eye standard plot of the AHAZ]). The average accuracy over all 16 segments is equal
to 7414%.

The clinical study in ] showed a very high inter-observer variability for multass as-
sessments of regional segments. For instance, Table Risipaper shows the assessments of

3 radiologists, each compared to a panel ground-truth ddaby an independent consensus.
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The lowest radiologist performance is 55% and the highe86%, indicating a substantial
inter-observer diference of 24%. Therefore, the problem is really challengangl we believe
an algorithm performance of 74% is an acceptable rate bedaesinter-observer variability

can be as high as 24%.

Confusion Matrix

Table 4.1 reports the confusion matrices for basal, midgaand apical segments. The diago-
nal elements indicate the number of segments that werafeddssorrectly, whereas those on
the df-diagonal indicate the number of mis-classified segmewtsgalvith the corresponding
incorrect classes. Among 348 basal segments, 266 wergfiddsorrectly (764%); among
348 midcavity segments, 254 were classified correctlyO%3; and among 232 apical seg-

ments, 168 were classified correctly (F%).

Predicted Condition

normal | hypokinesia| akinesia| dyskinesial
normal 193 15 1 0
hypokinesia 35 68 1 0
Basal ground-truth aKinesia 9 17 5 0
dyskinesia 4 4 1 0
normal 188 21 0 0
. . hypokinesia 42 62 0 0
Mid-cavity ground-truth akinesia 7 15 7 )
dyskinesia 4 5 0 0
normal 110 19 0 0
. hypokinesia| 23 52 0 0
Apical ground-truth aKinesia 5 1 5 0
dyskinesia 2 3 1 1

Table 4.1: Confusion matrix

Bull's eye Plots:

Fig. 4.5 shows the results for 14 randomly selected subjetitse colours depict the four
classes: red for normal, green for hypokinetic, yellow fkinatic and white for dyskinetic.

Note that normal and hypokinetic conditions are detectechast of the cases whereas the
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dyskinetic conditions are missed, which can be explaineth&gmall proportion of dyskinetic

segments in our training data.
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Figure 4.5: Bull's eye plot obtained from ground-truth inwmin 1,3. The colors depict the four
classes: red for normal, green for hypokinetic, yellow fkinatic and white for dyskinetic.
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4.4 Conclusion

This study investigated classifying regional cardiac sexgi® into one of four classes: (1)
normal; (2) hypokinetic; (3) akinetic; and (4) dyskinet&tarting from a minimum user input in
only one frame in a cardiac sequence, we built for all theomgjisegments and all subsequent
frames a set of statistical MRI features which can charasesegmental cavitsnyocardium
contraction without the need for delineating the LV boumein all the frames. Using these
features as inputs to a multi-class support vector macl8vdA) classifier, we obtained a 4-
class assessment of each segment. A comprehensive expetliealuation over 928 cardiac
segments obtained from 58 subjects showed a very promigirfgrmance of the algorithm,

with an overall 4-class accuracy of.74%.
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Chapter 5

Conclusion

5.1 General Discussion

The LV function is assessed using global indicators sucheasien fraction as well as local
indicators such as segmental wall motion. In clinical pcagtevaluation of the LV function
relies on either visual assessment or manual segmentattmeerpretation of global as well
as segmental LV wall motion. As discussed in chapter oneavisssessments are subject to
high inter-observer variabilities, and are inaccurate amal-reproducible procedures 4 5].
Manual LV segmentation is also a subject-dependent anddonsuming process. This task
is subject to intra and inter-observer variability.

We proposed accurate, real-time techniques for global egidmal assessment of cardiac
LV using MR images. The proposed methods can be used as aodiagtool to assist the

radiologists in such assessments.

5.2 Cardiovascular Magnetic Resonance Imaging

As discussed in chapter one, CMR is an accurate and repraedcipl 2, 8] imaging modality
and patients can undergo several CMR scans without beingsexpdo ionizing radiation

[20]. These features make it an ideal technique for monitormegtteatment and progression
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of cardiac disease.

In this project, a set of 2D short-axis cine MR images of sciisj@vas acquired through the
cardiac cycle on a.BT scanner with fast-imaging employing steady-state aitipm (FIESTA)
image sequence mode.

The experiments in chapters two, three and four have been ao@a set of 20, 58 and 58
subjects respectively. The dataset used in chapters thceoar contained short-axis image
datasets (i.e., apical, mid-cavity and basal) from 21 nbamad 37 abnormal hearts. The subject
population included 41 males and 17 females with the aveagg®f subjects being 52+ 15.0
years. More details have been provided in each chapter.

The performance of the proposed techniques were compatadyvaund truths built by

three experienced radiologists, each of whom annotatefieaetit portion of the data set.

5.3 Global Assessment of Cardiac Function

We investigated a technique for global assessment of thenLMal-time by computing the
cardiac Ejection Fraction (EF) in chapter two. The EF dependthe variation in the volume
of the LV cavity during a cardiac cycle, and is an essentiadsunee in the diagnosis of cardio-
vascular diseases. It is often estimated via manual segtmambf several images in a cardiac
sequence, which is prohibitively time consuming. Alteively, automatic segmentation can
be used, but this is a challenging and computationally esigertask that may result in high
estimation errors .

We proposed to estimated the EF directly (without segmiemiafrom Magnetic Reso-
nance image statistics via machine learning. From a simg@e imput in a single image, we
built statistics for all the images in a subject dataset.s€heage statistics were based on the
Bhattacharyya cdgcients of similarity between image distributions, whichrezgehown to be
non-linearly related to the LV cavity areas. We used an ANNd the relation between the

image statistics and the corresponding LV cavity areasch sabject dataset.
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We estimated the LV cavity area in each single image usingiagd ANN. The LV cavity
volume in each frame was estimated by integrating the cooreting areas. The EF were

estimated from the volumes in end-diastole and end-systole

A comprehensive experimental evaluation over 20 subjestsothstrated an excellent con-
formity between the automatically estimated EFs and thosepcated from manual segmen-
tations. The proposed method yielded correlationflc@ents of 089 and 091 for the LV
cavity areas and volumes, respectively, indicating a hyinetation between manual and au-
tomatic estimations. Moreover, we performed a comprelkensvaluation on thefiect of
user-provided input and ANN design. The proposed methadsrein an approximate user-
provided localization of the LV cavity. We evaluated theustmess of the method with respect
to variation in user-provided input. We showed that the nezaor is significantly increased by
the size of the region enclosed within the user-providegieuve also investigated théect
of the choice of number of neurons on the results.

Several comparisons with graph-cut and level-set estimatdf the EF based on recent
segmentation algorithms confirmed that the proposed meataondield a competitive perfor-

mance, while significantly reducing the computational load

5.4 Regional Assessment of Cardiac Function

Chapter three proposed a real-time method for automatinglétection and localization of
segmental (regional) myocardial abnormalities in MRI. Thethmod is a machine-learning and
image-statistic based approach to evaluate segmental hsfien. As discussed in chapter
three, in practice, assessment of the segmental cardiatdarns considered an essential diag-
nosis and follow-up component]f It is often assessedsuallyfollowing the American Heart
Association (AHA) [] standard, which prescribes selecting representativedtBiac slices
SO as to generate 17 standardized LV segments. Alterngtaetomating the detection and

localization of regional abnormality has recently beenufoof research 1[5, 11, 21, 4, 14, 10).
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Regardless of suchtert, a fast and accurate technique is still desired.

The proposed technique requires minimal user input in only/foame in a subject image
dataset. For all the regional segments and all subsequane$ we build a set of statistical
MRI features based on the Bhattacharyya measure of similbaeityeen distributions. We
demonstrated that over a cardiac cycle the estimatedtstakifeatures are correlated with
the proportion of blood within each segment, and can theedfe used to describe segmental
contraction with minimal userfiort. We found the optimal direction along which the proposed
image features are most descriptive via a Linear Discrintidnalysis (LDA). Then, using
the results as inputs to a Linear Support Vector Machine (Up¥®lassifier, we estimated the

abnormality of each standard cardiac segments in real-time

We showed experimental evaluations of the proposed atgoritver 928 cardiac segments
obtained from 58 subjects. We demonstrated the performahtee LSVM using (1) the
ROC (Receiver Operating Characteristic) curves with theesponding AUCs (Area Under
the Curve) and (2) the Bhattacharyya measuiktd evaluate the discriminative power of the
features. Furthermore, we assessed the classifier perfoawaith a leave-one-third-of-the-
subjects-out approach, i.e., by training our algorithrmgg3 of the dataset and testing on the
remaining data. The proposed algorithm yielded an oveladisification accuracy of 86.09%
and a kappa measure of 0.73. We further reported meta-analysiparisons with several
recent methods, which showed that the proposed method elthaycompetitive performance

while reducing the computational load and us@ors.

In chapter four we studied the more general and challenginlg-ciass problem, where
each regional segment is classified into one of four clagdgsiormal; (2) hypokinetic; (3)
akinetic; and (4) dyskinetic. We built a set of statisticaRMeatures for all of the regional
segments and subsequent frames using minimal user inpotjirooe frame. These estimated
features could be used to characterize segmental cavityngodardium contraction without
requiring manual segmentation of the LV in all frames. Wedubese features as inputs for a

multi-class SVM classifier and obtained a 4-class assedsmheach segment.
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We assessed the performance of the proposed algorithm hwéh triteria: the accuracy,
confusion matrix, and bulls eye plot. Experimental evabrabver 928 cardiac segments ob-
tained from 58 subjects demonstrated the strong perforenafitie algorithm, with an overall

4-class accuracy of 784%.

5.5 Future Direction

In chapter two, the estimation of the EF relies on an apprai@mser-provided localization of
the LV cavity, with the user being required to provide anialibox close the LV in a single 2D
image. Since, the LV localization plays an important rolestimating the image features, LV
localization has the potential to be fully automatic by gpp, a localization technique. LV
localization techniques based on blob detection, optioal 8nd machine learning techniques
can be used to approximately find the LV location in the erabtile frame. Such technique
would be able to reduce the error (discussed in Fig. 2.25exhby user input.

In chapters three and four, the proposed regional myodalieormality detection frame-
work is based on image statistics. This framework requises inputs, to specify an initial
delineation and several anatomical landmarks on the fawstdr Again in the future it would
be interesting to fully automate the process to remove tisgipiities of user bias or error.

In chapter four, we assessed the segmental cardiac dysfiumsing a Support Vector Ma-
chine fed by statistical image features, based on a meatasmitarity between distributions.
The accuracy of the classification technique can potentiadl improved through the use of

alternative techniques:

1. The accuracy could be increased by training the SVM dlassvith a large number of
abnormal datasets. The proposed method produced compreheasults for normal
and hypokinetic segments because we had access to moretdatated to these condi-
tions. We predict that by increasing the number of datasmtesponding to the other

conditions, the accuracy for additional conditions cowdrproved.
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2. The image features used in the proposed method are itytbasied. Other robust image
features, e.g., those based on the shape information cotédtmlly be mixed with the

current features to increase the accuracy.

Additional future work includes application of the propdseethod to estimate other car-
diac functions such as muscle thickening and right vemtraddinormality detection. The pro-
posed method is based on the consistency of the image digtnk within the cavity across
different frames, and can therefore be readily extended to otbdalities where such consis-

tency is verified.
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